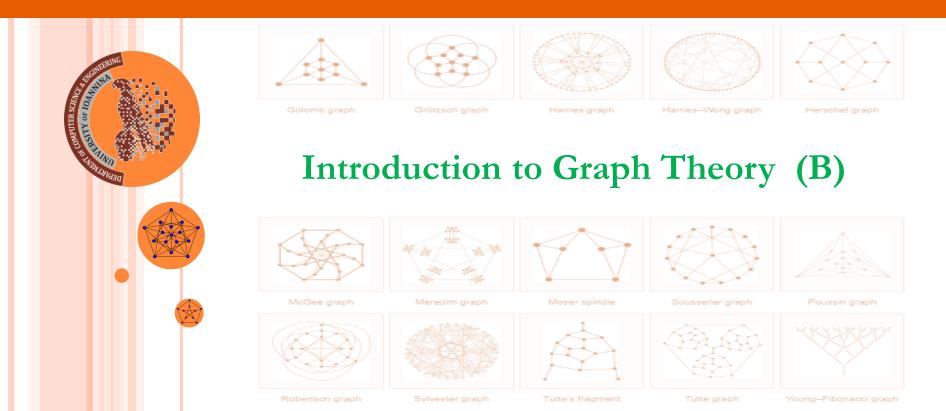
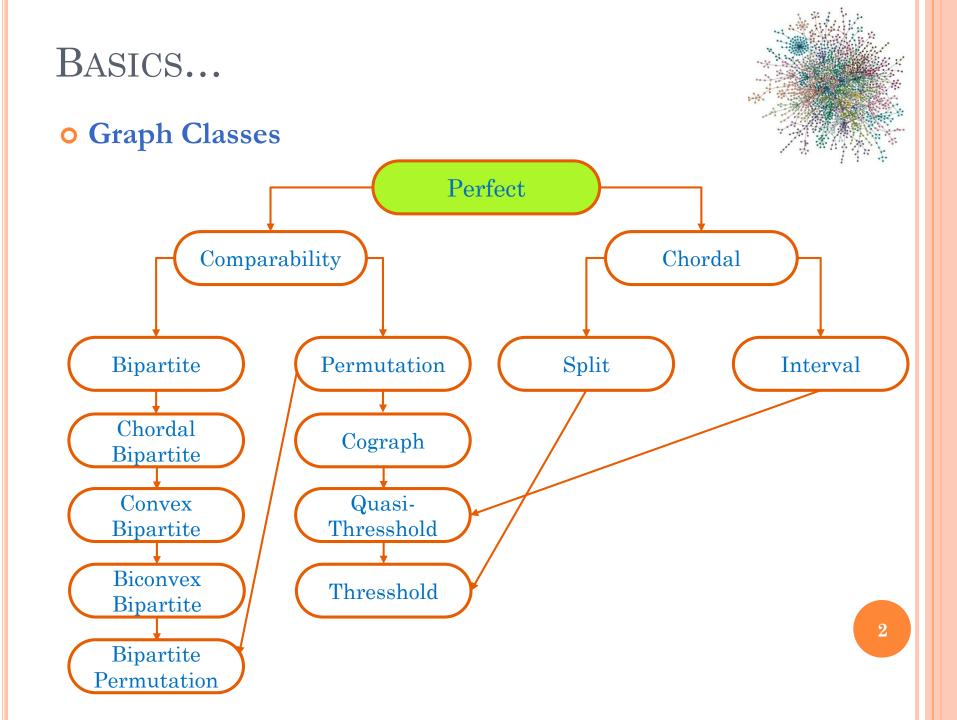
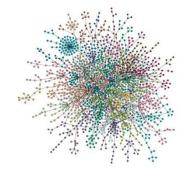


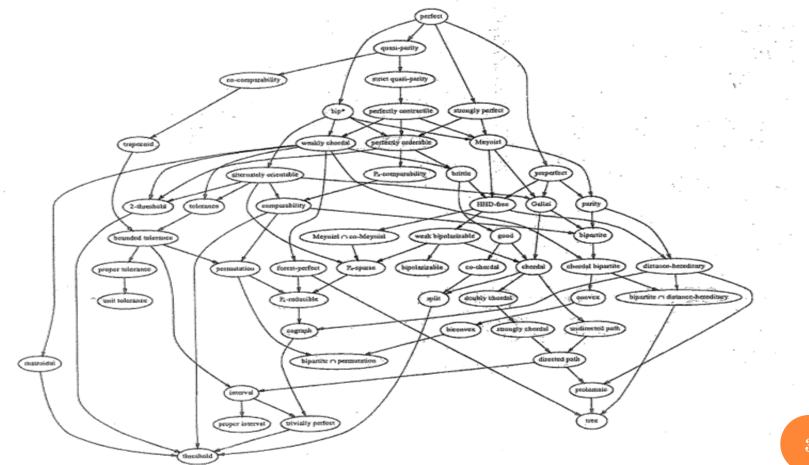
Graph Theory



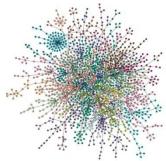


• Graph Classes



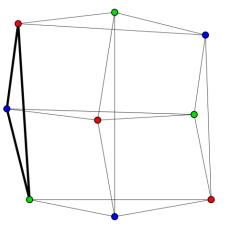


• Graph Class: Perfect Graphs

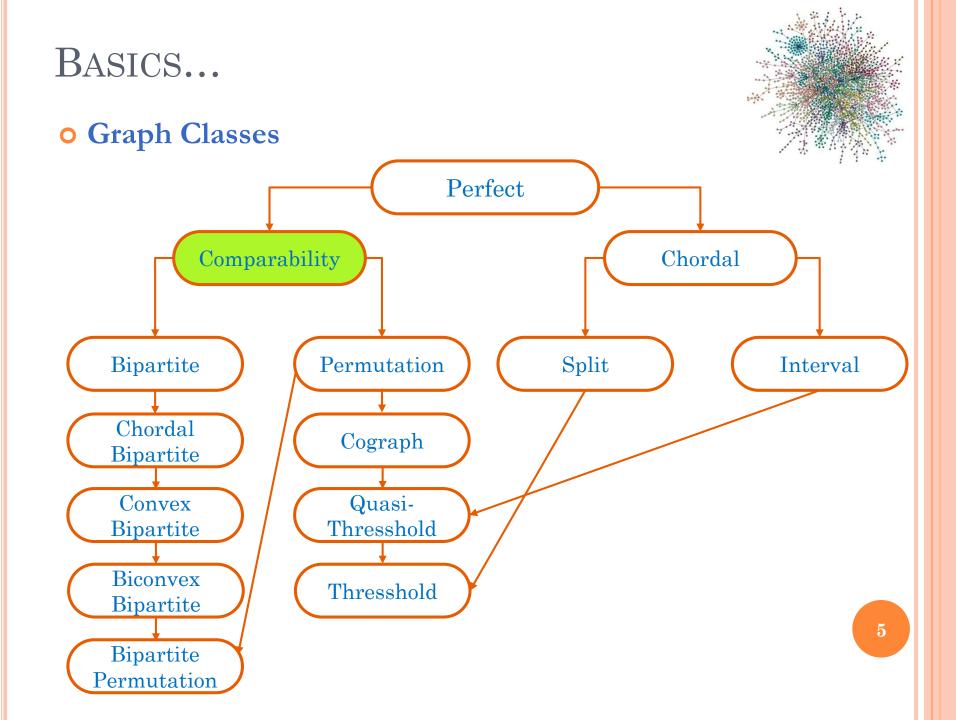


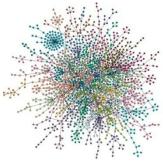
- A **Perfect Graph** is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph.
- An arbitrary graph G is perfect if and only if we have:

 $\forall S \subseteq V(G)(\chi(G[S]) = \omega(G[S]))$



- A graph G is perfect *iff* its complement \overline{G} is perfect (perfect graph theorem)
- A perfect graphs are the same as Berge graphs, which are graphs G where <u>neither G nor \overline{G} contain an induced cycle of odd length 5 or</u> more (strong perfect graph theorem).

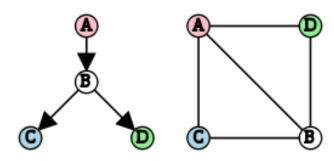


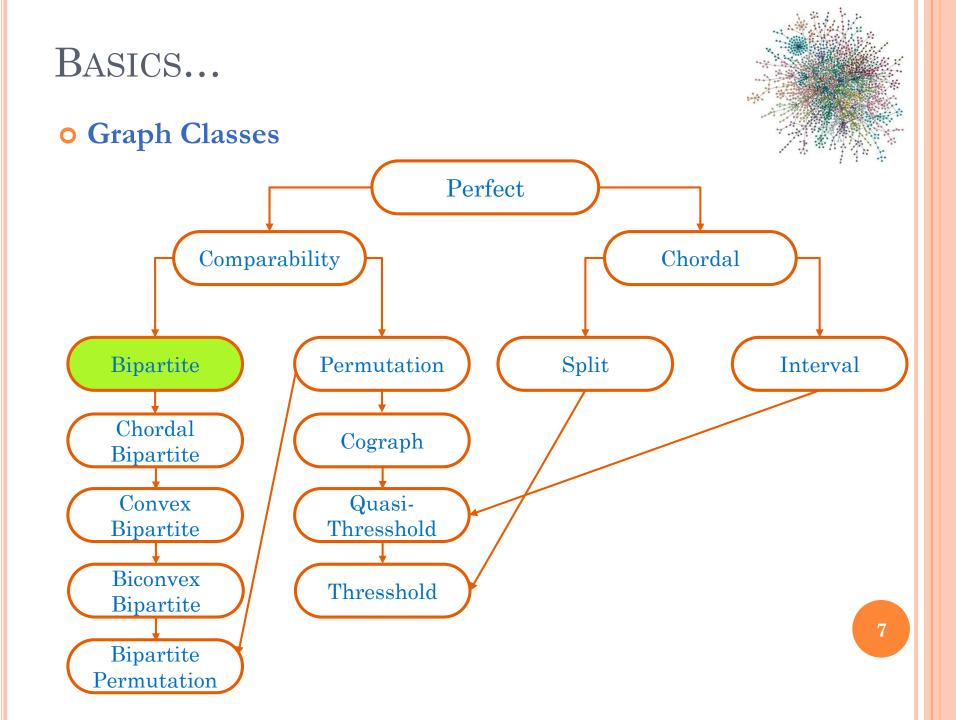


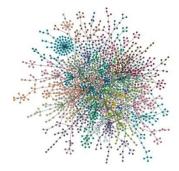
• Graph Class: Comparability Graphs

- A **comparability graph** is an undirected graph that connects pairs of elements that are comparable to each other in a partial order.
- Comparability graphs have also been called **transitively orientable graphs**, partially orderable graphs, containment graphs, and divisor graphs.
- An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order.
- Satisfy the Transitive Orientation Property

Each edge can be assigned a one-way direction in such a way that the resulting oriented graph (V, F): $ab \in F$ and $bc \in F \rightarrow ac \in F$ ($\forall a, b, c \in V$)

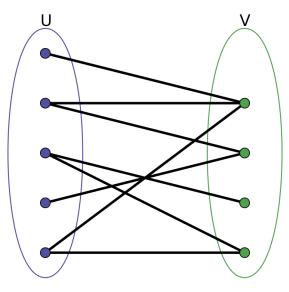


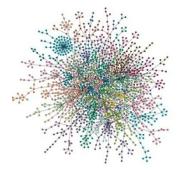




• Graph Class: Bipartitite Graphs

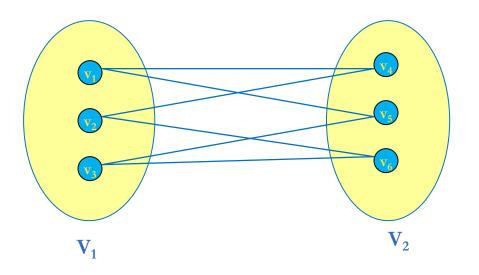
- In a simple graph G, if V can be partitioned into two disjoint sets V₁ and V₂ such that every edge in the graph connects a vertex in V₁ and a vertex V₂
- Remark: no edge in G connects either two vertices in V_1 or two vertices in V_2

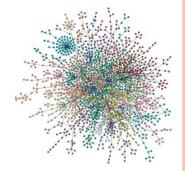




• Graph Class: Bipartitite Graphs

- In a simple graph G, if V can be partitioned into two disjoint sets V₁ and V₂ such that every edge in the graph connects a vertex in V₁ and a vertex V₂
- Remark: no edge in G connects either two vertices in V_1 or two vertices in V_2
- Application example: Representing Relations
- Representation example: $V_1 = \{v_1, v_2, v_3\}$ and $V_2 = \{v_4, v_5, v_6\}$,



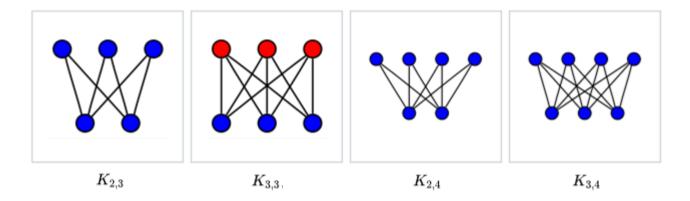


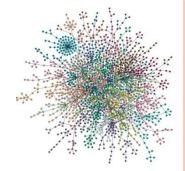
• Graph Class: Bipartitite Graphs (Complete)

- A complete bipartite graph has its vertex set portioned into two subsets of *m* and *n* vertices, respectively.
- There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
- The complete bipartite graph is usually denoted $K_{n,m}$

• Graph Class: Bipartitite Graphs (Complete)

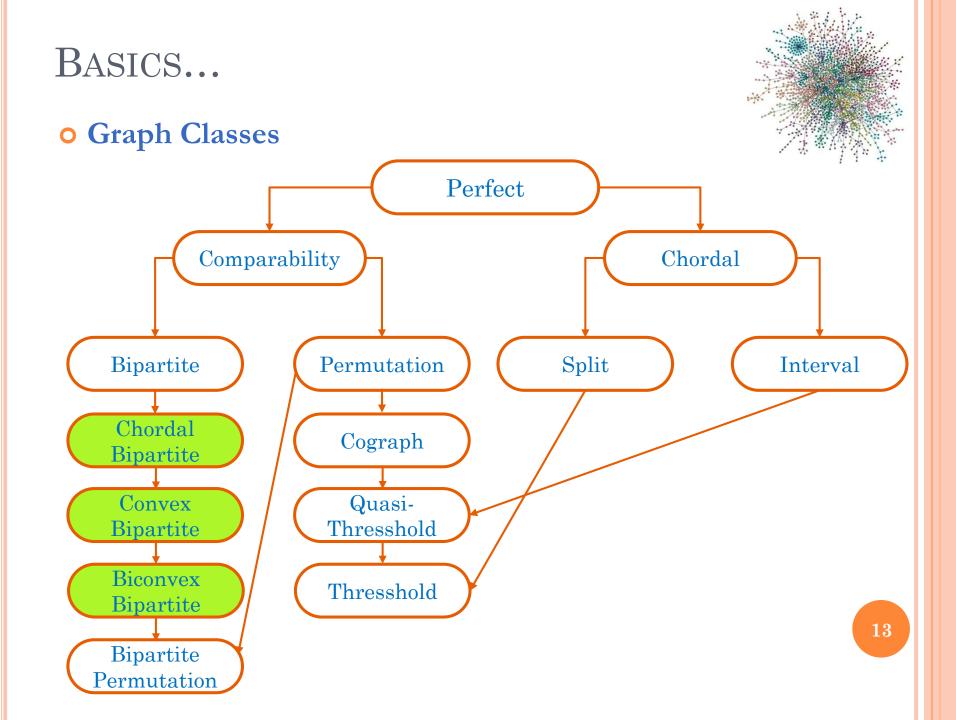
- A complete bipartite graph has its vertex set portioned into two subsets of *m* and *n* vertices, respectively.
- There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
- The complete bipartite graph is usually denoted $K_{n,m}$

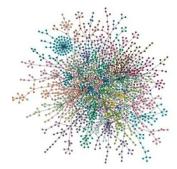




• Graph Class: Bipartitite Graphs (Complete)

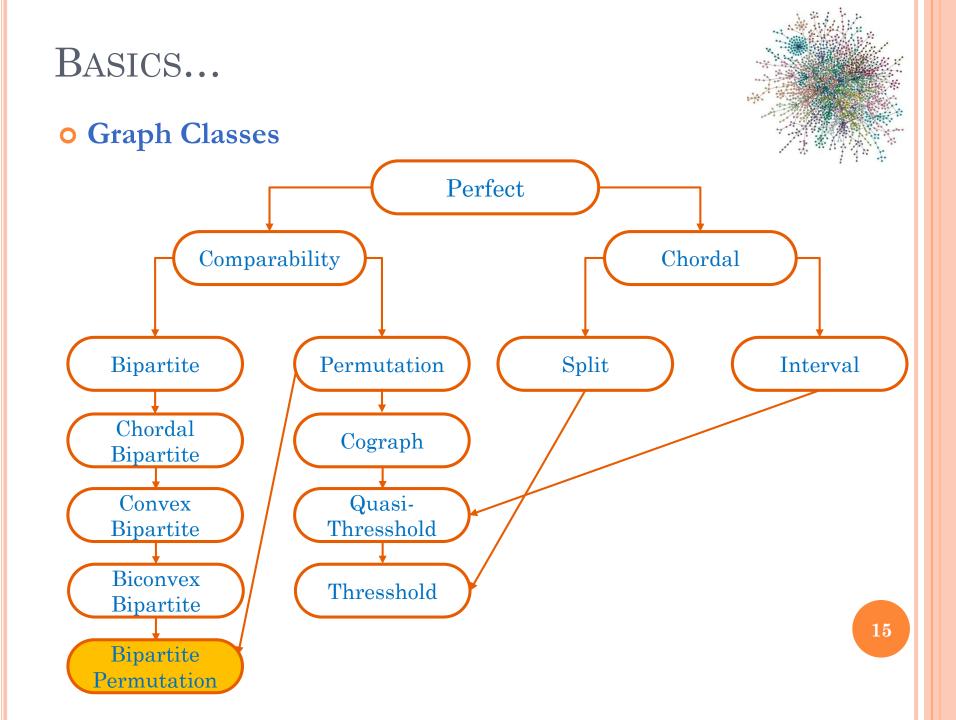
- A complete bipartite graph has its vertex set portioned into two subsets of *m* and *n* vertices, respectively.
- There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset.
- The complete bipartite graph is usually denoted $K_{n,m}$
- The graph $K_{2,2}$ equals the 4-cycle C_4 (the square).

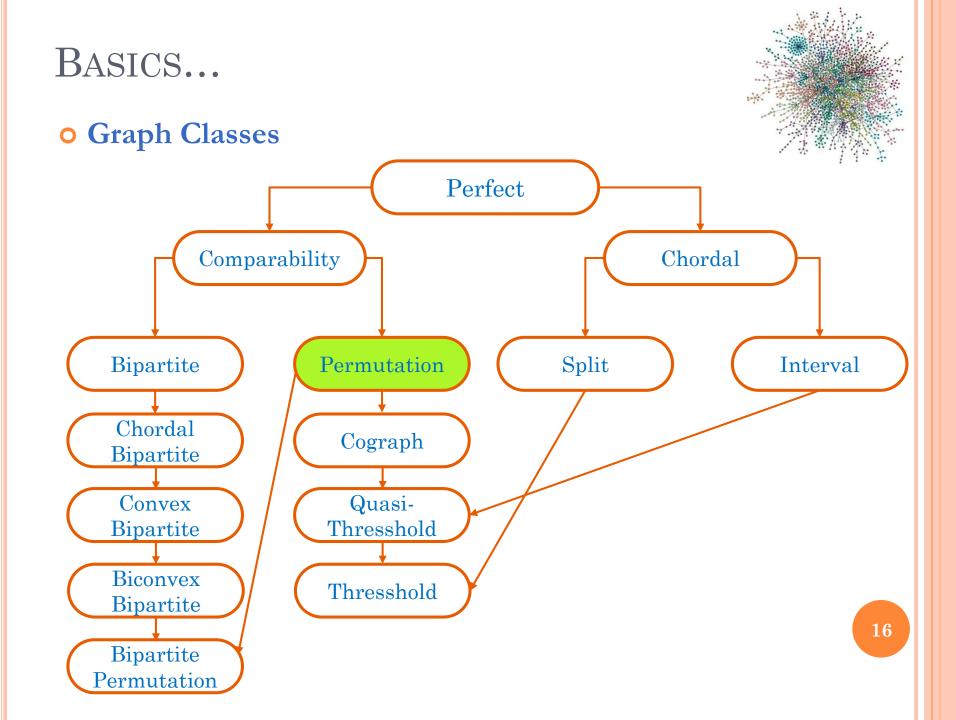


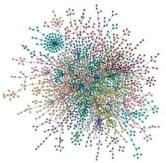


• Graph Class: Sub-classes of Bipartitite Graphs

- In a simple graph G, if V can be partitioned into two disjoint sets V₁ and V₂ such that every edge in the graph connects a vertex in V₁ and a vertex V₂
- Remark: no edge in G connects either two vertices in V_1 or two vertices in V_2
- A chordal bipartite graph is a bipartite graph B = (X, Y, E) in which every cycle of length at least 6 in B has a chord, i.e., an edge that connects two vertices that are a distance > 1 apart from each other in the cycle
- A convex bipartite graph is a bipartite graph with specific properties. A bipartite graph, $(U \cup V, E)$, is said to be convex over the vertex set U if U can be enumerated such that for all $v \in V$ the vertices adjacent to v are consecutive.
- Convexity over V is defined analogously. A bipartite graph (U U V, E) that is convex over both *U* and *V* is said to be **biconvex** or doubly convex.

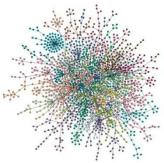






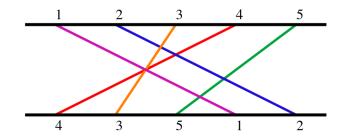
• Graph Class: Permutation Graphs

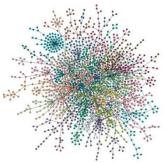
- An **intersection graph** is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph
- A **permutation graph** is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation.
 - Geometrically can be defined, as the intersection graphs of line segments whose endpoints lie on two parallel lines.



• Graph Class: Permutation Graphs

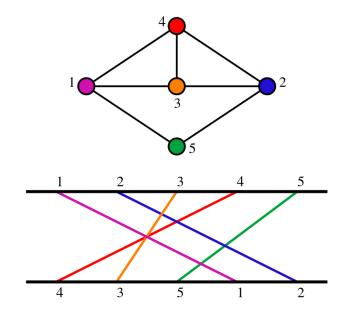
- An **intersection graph** is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph
- A permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation.
 - Geometrically can be defined, as the intersection graphs of line segments whose endpoints lie on two parallel lines.

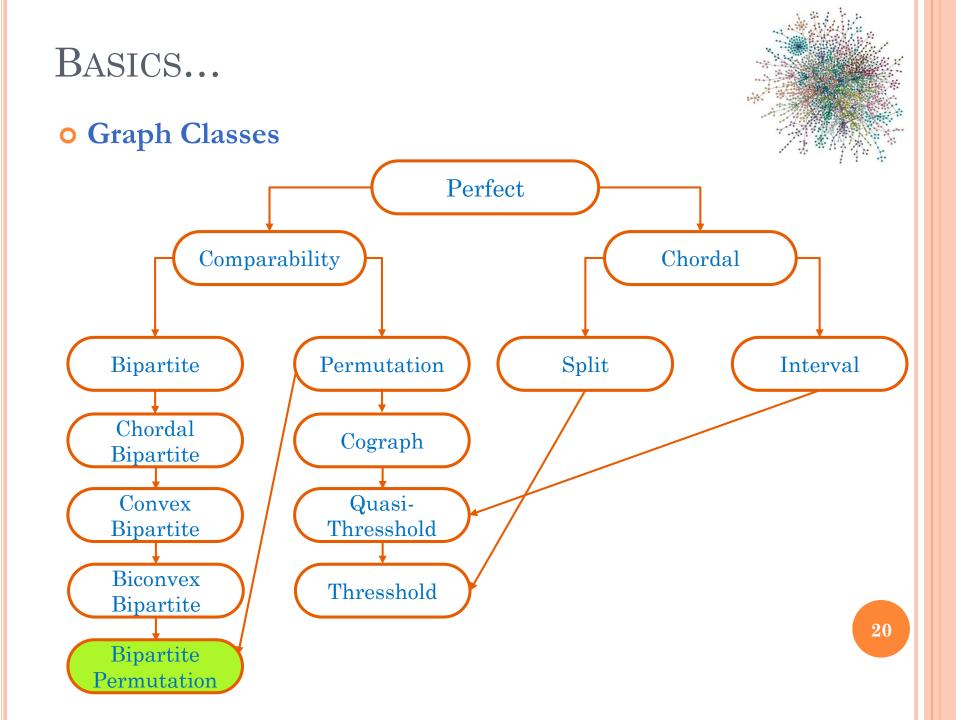


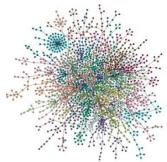


• Graph Class: Permutation Graphs

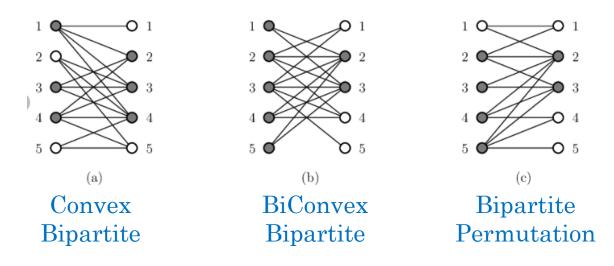
- An **intersection graph** is a graph that represents the pattern of intersections of a family of sets. Any graph can be represented as an intersection graph
- A permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation.
 - Geometrically can be defined, as the intersection graphs of line segments whose endpoints lie on two parallel lines.

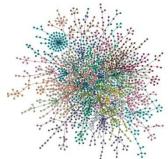






- A graph is a bipartite permutation graph, if it is both bipartite and a permutation graph.
- A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.
- A bipartite graph G = (A, B, E) is a bipartite permutation graph iff it admits an ordering of A that has the **adjacency** and **enclosure properties**

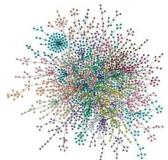




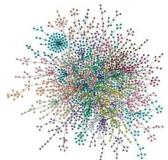
• Graph Class: Bipartite Permutation Graphs

- A graph is a bipartite permutation graph, if it is both bipartite and a permutation graph.
- A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.
- A bipartite graph G = (A, B, E) is a bipartite permutation graph iff it admits an ordering of A that has the **adjacency** and **enclosure properties**

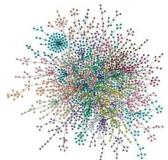
How many classes could be defined, if we combine properties from different graph classes...



- A graph is a bipartite permutation graph, if it is both bipartite and a permutation graph.
- A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.
- A bipartite graph G = (A, B, E) is a bipartite permutation graph iff it admits an ordering of A that has the **adjacency** and **enclosure properties**

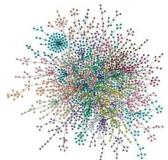


- A graph is a bipartite permutation graph, if it is both bipartite and a permutation graph.
- A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.
- A bipartite graph G = (A, B, E) is a bipartite permutation graph iff it admits an ordering of A that has the **adjacency** and **enclosure properties**



25

- A graph is a bipartite permutation graph, if it is both bipartite and a permutation graph.
- A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.
- A bipartite graph G = (A, B, E) is a bipartite permutation graph iff it admits an ordering of A that has the **adjacency** and **enclosure properties**

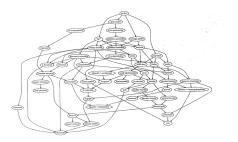


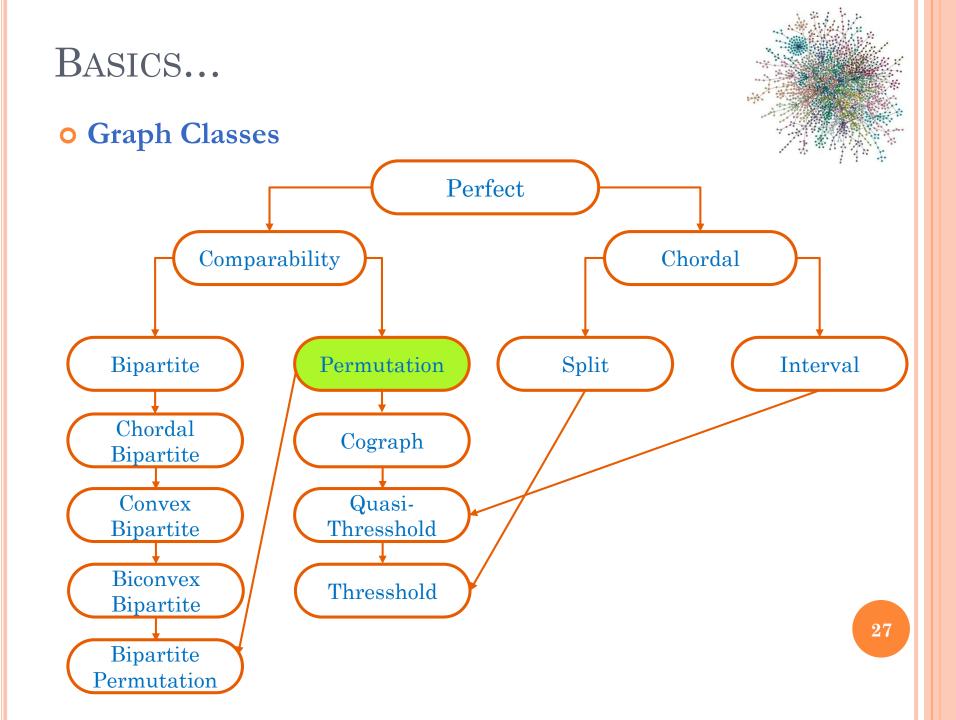
26

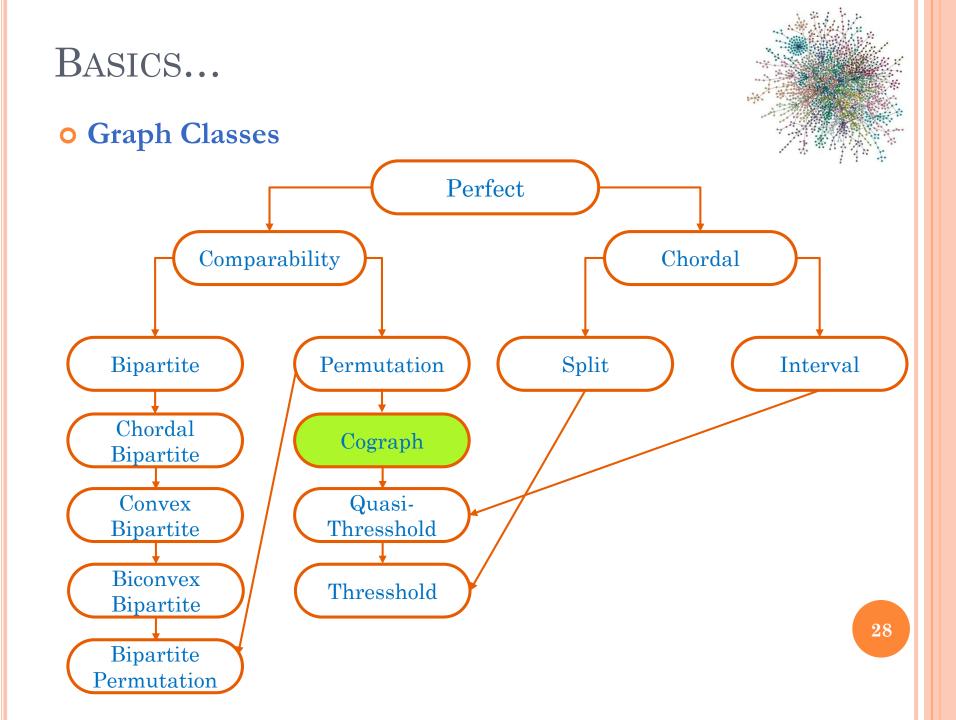
• Graph Class: Bipartite Permutation Graphs

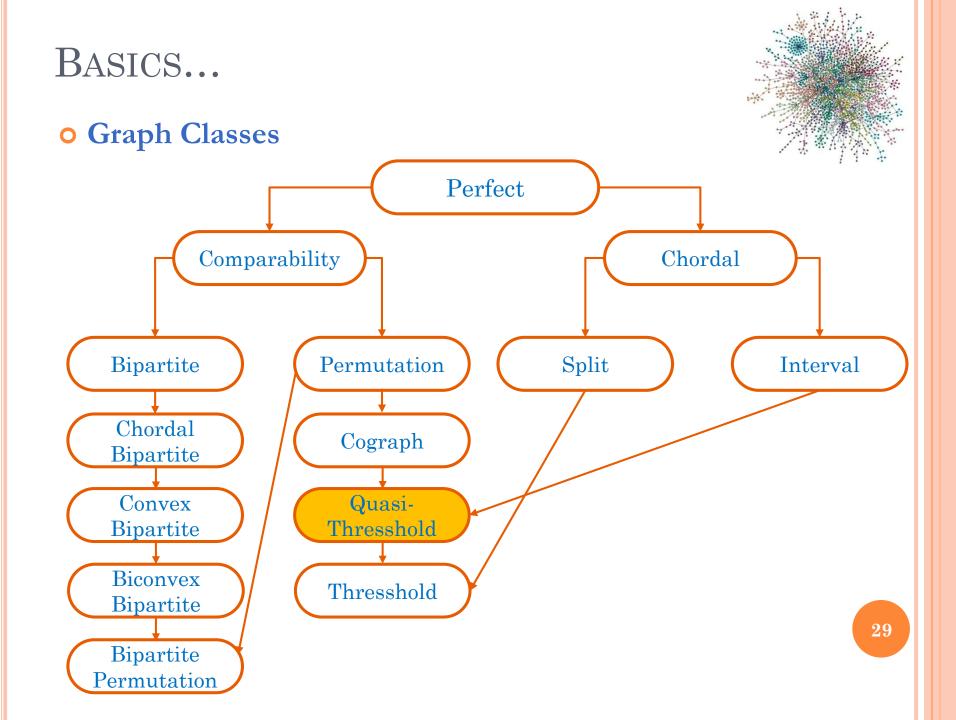
- A graph is a bipartite permutation graph, if it is both bipartite and a permutation graph.
- A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.
- A bipartite graph G = (A, B, E) is a bipartite permutation graph iff it admits an ordering of A that has the **adjacency** and **enclosure properties**

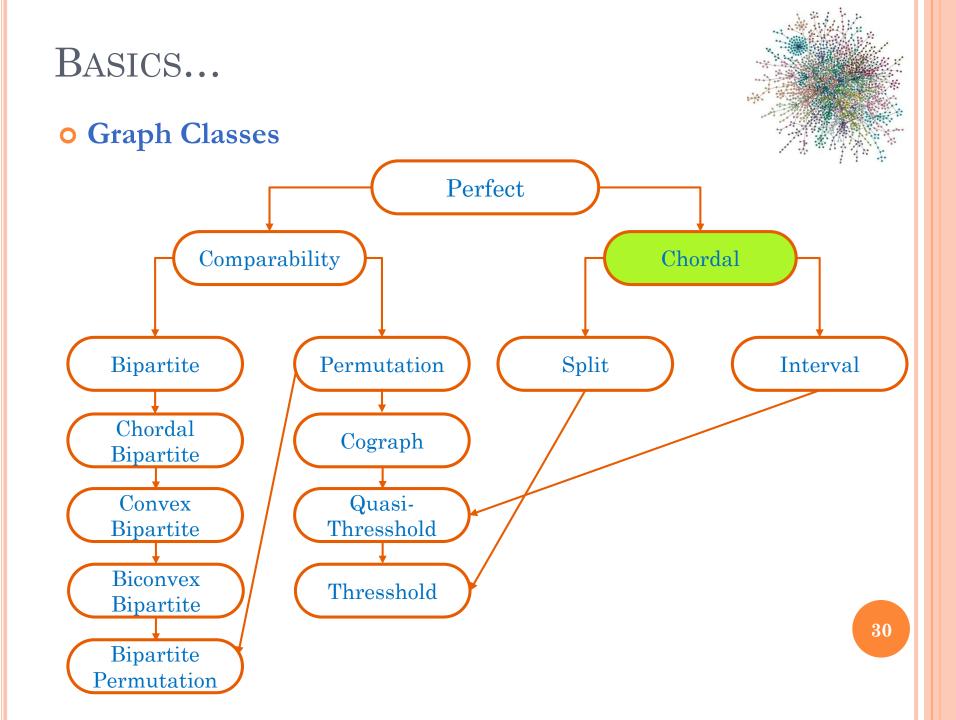
http://www.graphclasses.org/



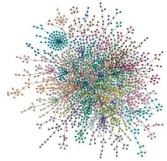




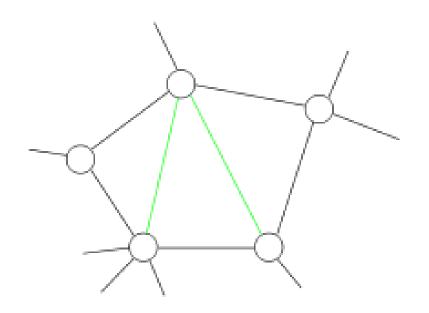




• Graph Class: Chordal Graphs



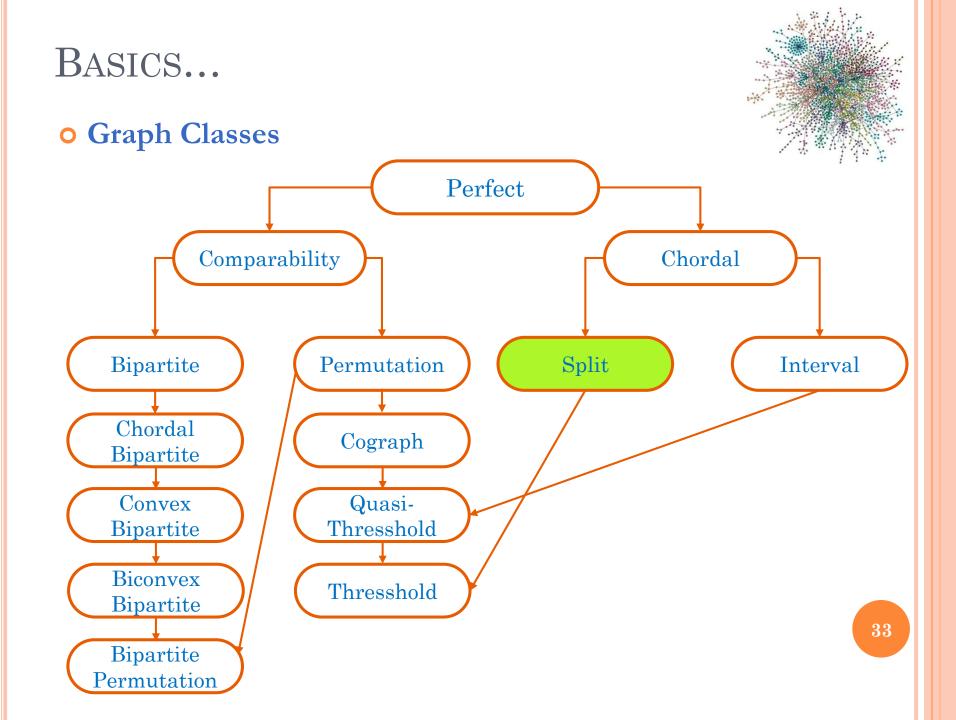
- A chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
- Every induced cycle in the graph should have exactly three vertices.
- They are sometimes also called **triangulated graphs**.



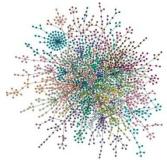
o Graph Class: Chordal Graphs

- A chordal graph is one in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
- Every induced cycle in the graph should have exactly three vertices.
- They are sometimes also called **triangulated graphs**.
- Transitive Orientation Property
 - Each edge can be assigned a one-way direction in such a way that
 - the resulting oriented graph (V, F):

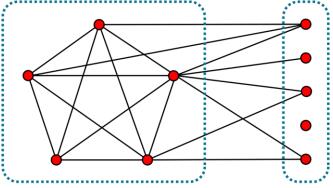
 $ab \in F and bc \in F \implies ac \in F (\forall a, b, c \in V)$



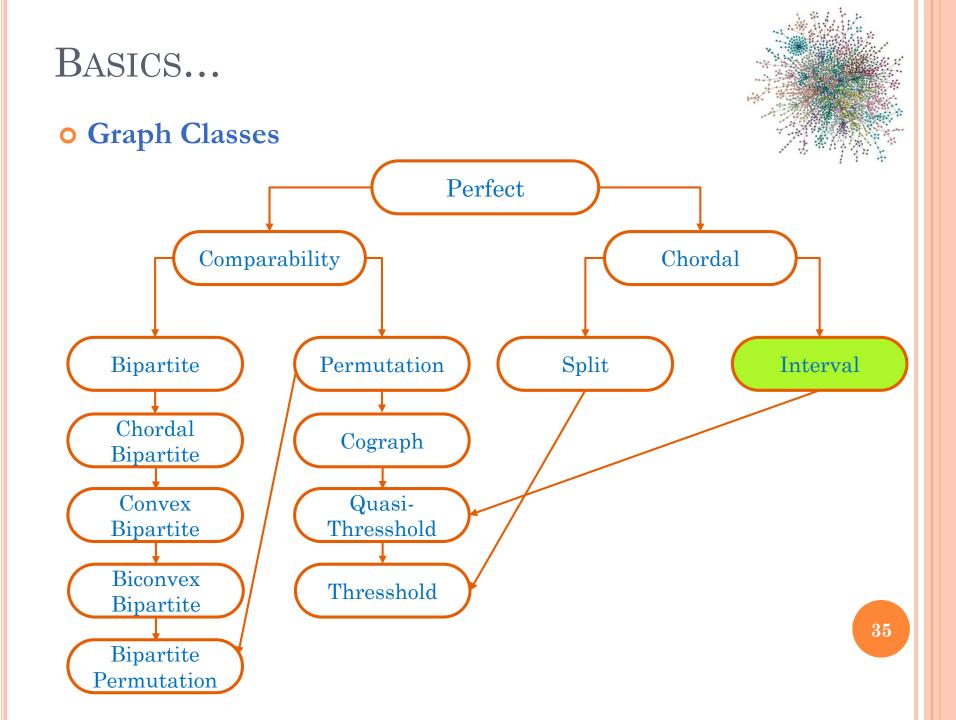
• Graph Class: Split Graphs



- A **split graph** is a graph in which the vertices can be partitioned into a clique and an independent set.
- A split graph may have more than one partition into a clique and an independent set.



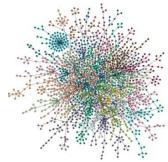
- Example: the path a-b-c is a split graph, the vertices of which can be partitioned in three different ways:
 - 1. the clique $\{a,b\}$ and the independent set $\{c\}$
 - 2. the clique {b,c} and the independent set {a}
 - 3. the clique $\{b\}$ and the independent set $\{a,c\}$



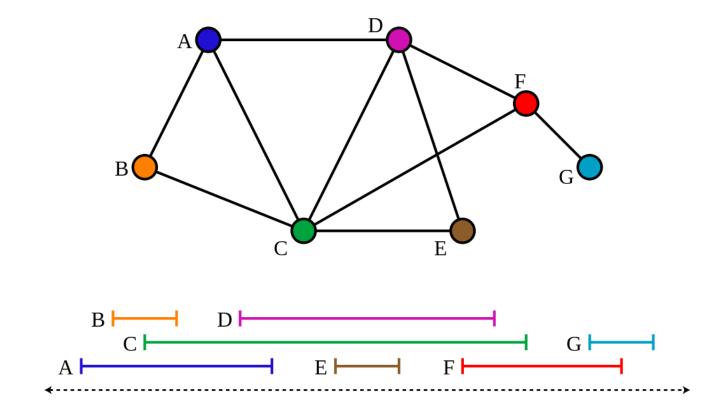
• Graph Class: Interval Graphs

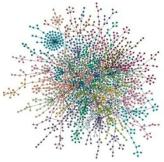
• An **interval graph** is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect.

• Graph Class: Interval Graphs



• An **interval graph** is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect.





• Graph Class: Interval Graphs

- An **interval graph** is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect.
- **Propositinon 1** : An induced subgraph of an interval graph is an interval graph.

Proof. If $[I_V], v \in V$, is an interval representation of a graph G = (V, E). Then, $[I_V], v \in X$, is an interval representation of the induced subgraph $G_X = (X, EX)$.

• **Propositinon 2** : An interval graph satisfies the triangulated graph property.

<u>Proof</u>.

Suppose *G* contains a cordless cycle $[v_0, v_1, ..., v_{l_1}, v_0]$ with l > 3. Let $I_K \rightarrow v_K$. For i =1, 2,..., l-1, choose a point $P_i \in Ii_1 \cap I_i$. Since I_{i_1} and I_{i_1} do not overlap, the points P_i constitute a strictly increasing or decreasing sequence. Therefore, it is impossible for the intervals I_0 and I_{l_1} to intersect, contradicting the criterion that v_0, v_{l_1} is an edge of *G*.

• Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines $\{F_1, F_2, ..., F_n\}$ $(n \ge 1)$, each one preserved in its own temperature range, let $[s_i, t_i], 1 \le i \le n$.

$$F_{1} = [4, 15]$$

$$F_{2} = [3, 8]$$

$$F_{3} = [0, 12]$$

$$F_{4} = [5, 16]$$

$$F_{5} = [1, 13],$$

$$F_{6} = [11, 16]$$

$$F_{7} = [2, 14]$$

• Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines $\{F_1, F_2, ..., F_n\}$ $(n \ge 1)$, each one preserved in its own temperature range, let $[s_i, t_i], 1 \le i \le n$.

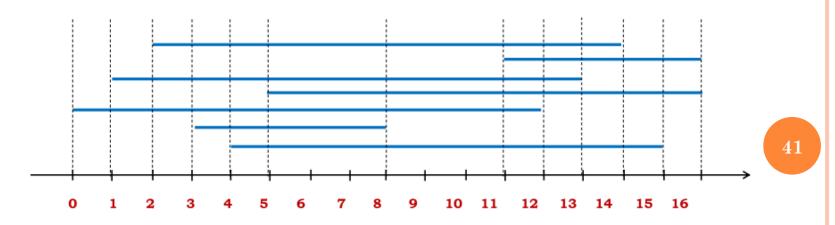
• Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines $\{F_1, F_2, ..., F_n\}$ $(n \ge 1)$, each one preserved in its own temperature range, let $[s_i, t_i], 1 \le i \le n$.

$$F_1 = [4, 15]; F_2 = [3, 8]; F_3 = [0, 12]; F_4 = [5, 16];$$

$$F_5 = [1, 13]; F_6 = [11, 16]; F_7 = [2, 14]$$

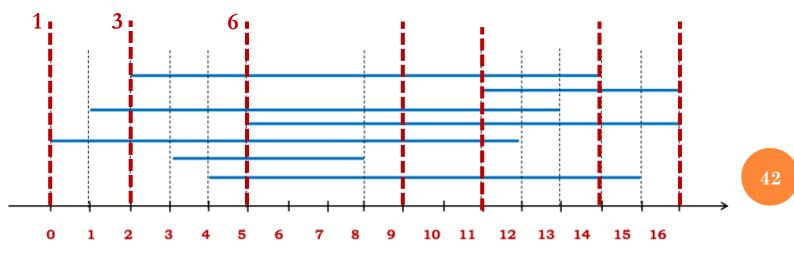


• Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines $\{F_1, F_2, ..., F_n\}$ $(n \ge 1)$, each one preserved in its own temperature range, let $[s_i, t_i], 1 \le i \le n$.

$$\begin{split} F_1 &= [4, 15]; F_2 = [3, 8]; \ F_3 = [0, 12]; F_4 = [5, 16]; \\ F_5 &= [1, 13]; \ F_6 = [11, 16]; \ F_7 = [2, 14] \end{split}$$



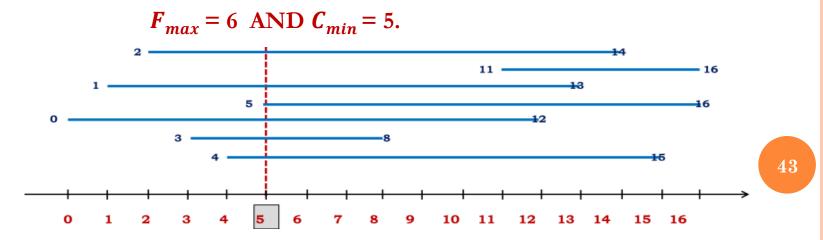
• Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines $\{F_1, F_2, ..., F_n\}$ $(n \ge 1)$, each one preserved in its own temperature range, let $[s_i, t_i], 1 \le i \le n$.

$$F_1 = [4, 15]; F_2 = [3, 8]; F_3 = [0, 12]; F_4 = [5, 16];$$

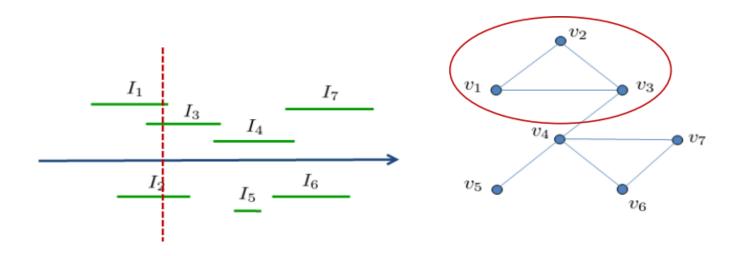
$$F_5 = [1, 13]; F_6 = [11, 16]; F_7 = [2, 14]$$



• Graph Class: Interval Graphs

• APPLICATION!

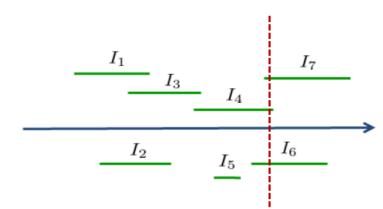
Let M a set of medicines $\{F_1, F_2, ..., F_n\}$ $(n \ge 1)$, each one preserved in its own temperature range, let $[s_i, t_i], 1 \le i \le n$.

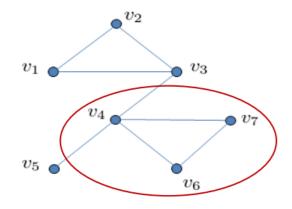


• Graph Class: Interval Graphs

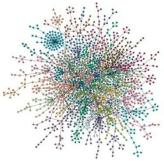
• APPLICATION!

The manipulation of such problems over interval graphs is made through the utilization of the computation of the maximum clique.



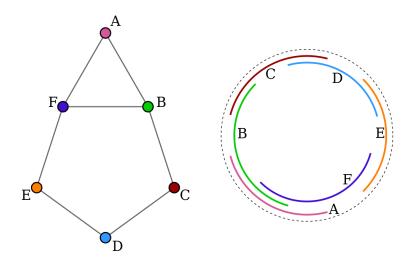


45



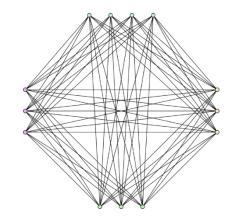
• Graph Class: Circular-Arc Graphs

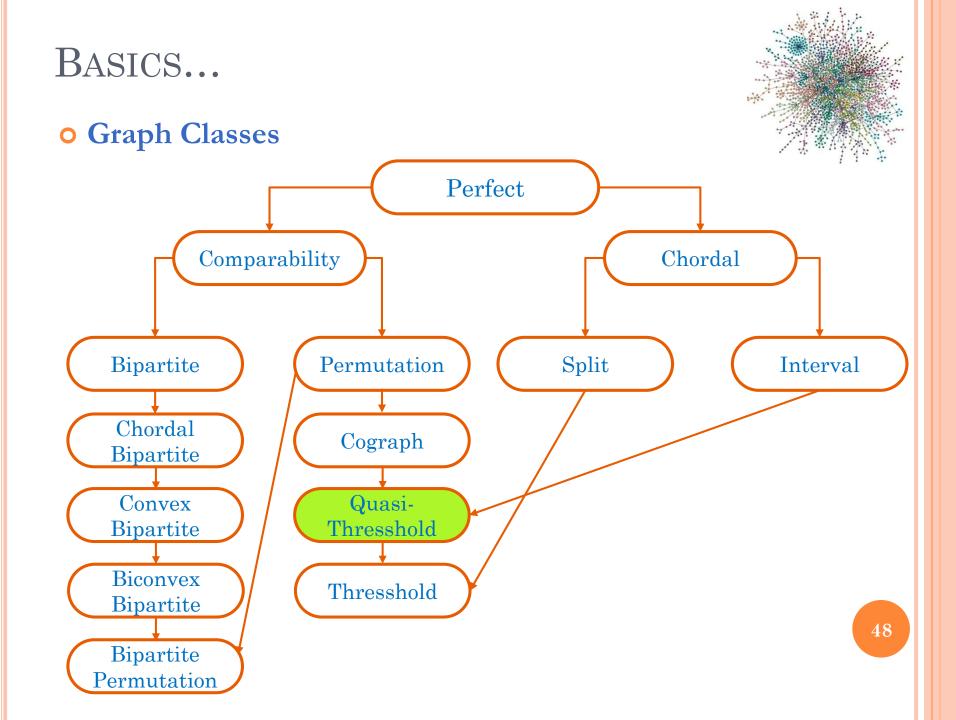
- A Circular-arc graph is the intersection graph of a set of arcs on the circle.
- It has one vertex for each arc in the set, and an edge between every pair of vertices corresponding to arcs that intersect
- If a circular-arc graph G has an arc model that leaves some point of the circle uncovered, the circle can be cut at that point and stretched to a line, which results in an interval representation.
- Unlike interval graphs, however, circular-arc graphs are not always perfect, as the odd chordless cycles C₅, C₇, etc., are circular-arc graphs.



• Graph Class: Cographs Graphs

- A cograph, or complement-reducible graph, or P_4 -free graph, is a graph that can be generated from the single-vertex graph K_1 by complementation and disjoint union.
- The family of cographs is the smallest class of graphs that includes K_1 and is closed under complementation and disjoint union
- The cographs may be defined as the graphs that can be constructed using the following operations, starting from the single-vertex graph:
 - any single vertex graph,
 ... is a cograph;
 - 2. if G is a cograph, ... so is its complement graph \overline{G} ;
 - 3. if G and H are cographs, ... so is their disjoint union $G \cup H$.

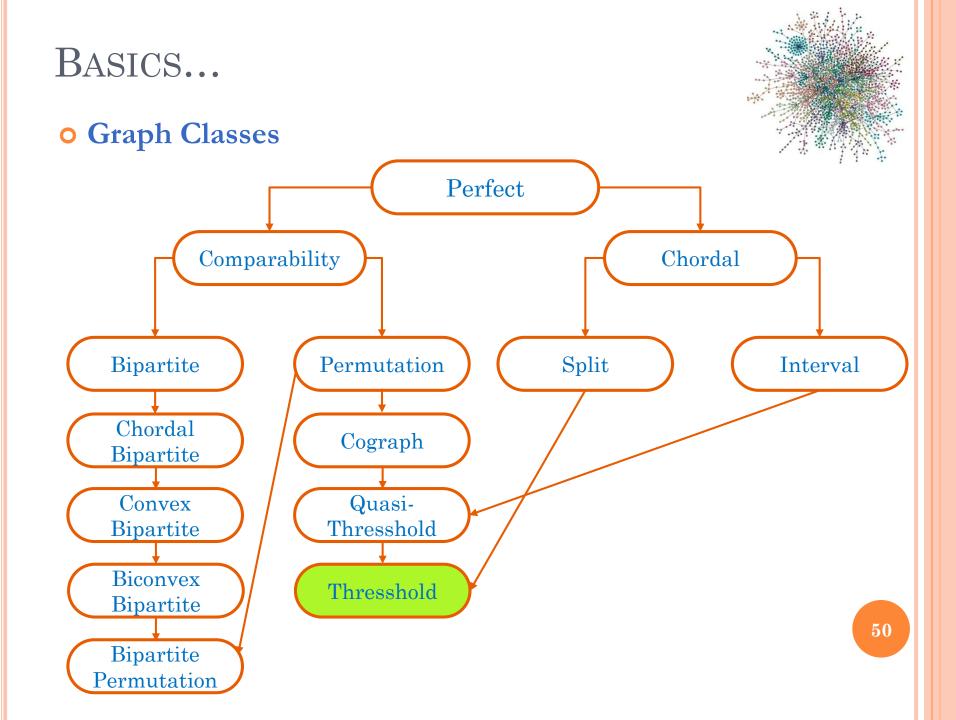






• Graph Class: Threshold Graphs

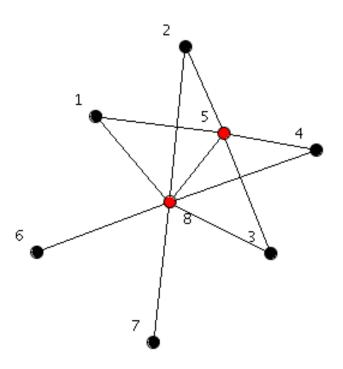
- The **quasi-threshold graphs** are defined recursively as follows:.
 - 1. K_1 is a quasi-threshold graph
 - 2. Adding a new vertex adjacent to all vertices of a quasi-threshold graph results in a quasi-threshold graph
 - 3. The disjoint union of two quasi-threshold graphs results in a quasi-threshold graph..



51

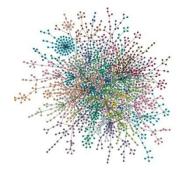
• Graph Class: Threshold Graphs

- A **threshold graph** is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations:
 - Addition of a single isolated vertex to the graph.
 - Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices.



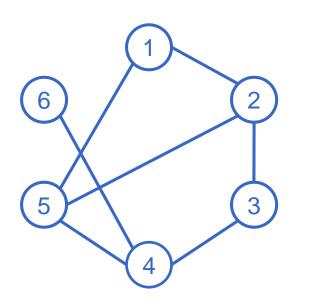
o Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.

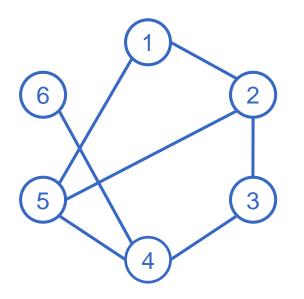


• Graph Representation – Adjacency Matrix

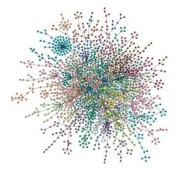
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1$ if $(i, j) \in E(G)$.



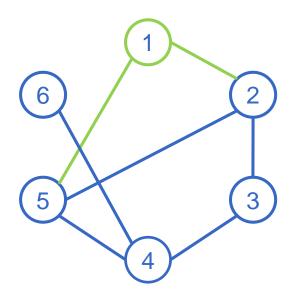
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



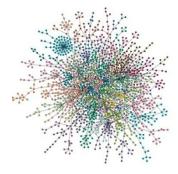
	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



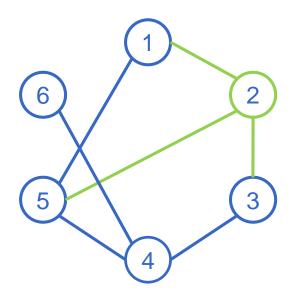
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1$ if $(i, j) \in E(G)$.



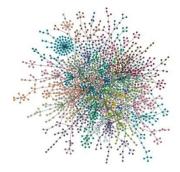
	1	2	3	4	5	6
1	0	1	0	0	-	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



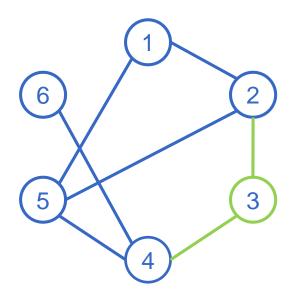
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1$ if $(i, j) \in E(G)$.



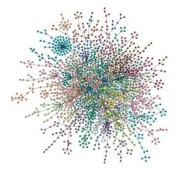
	1	2	3	4	5	6
1	0	1	0	0	1	0
2		0	Ч	0	1	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



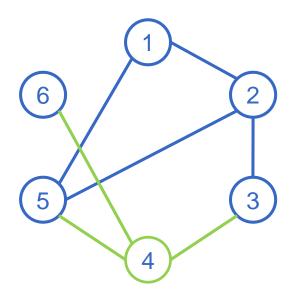
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



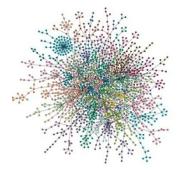
_	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0		0	hand	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



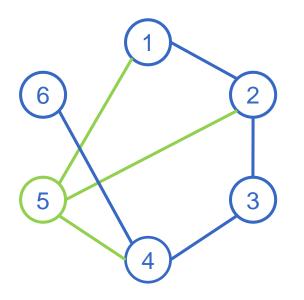
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



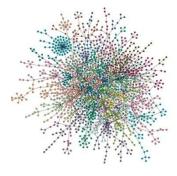
	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	-	0	had	1
5	0	0	0	0	0	0
6	0	0	0	0	0	0



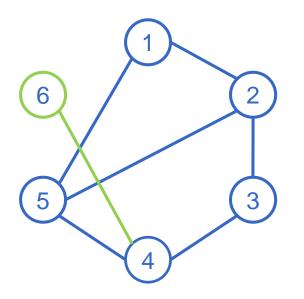
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



_	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5		1	0	1	0	0
6	0	0	0	0	0	0

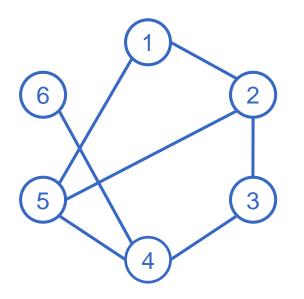


- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.

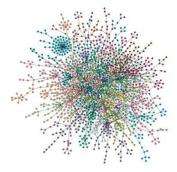


	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

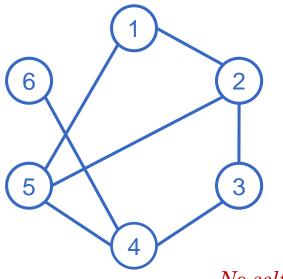
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

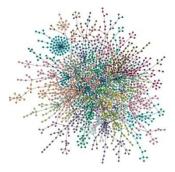


- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

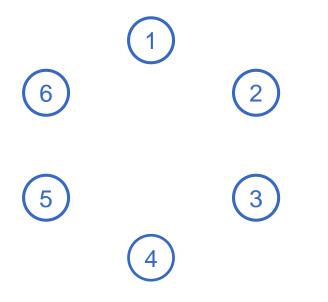
No self-loops encountered !!!



62

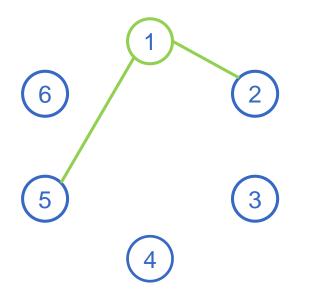
• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.

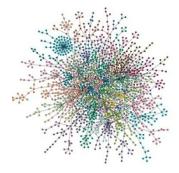


	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

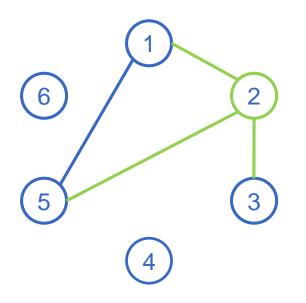
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



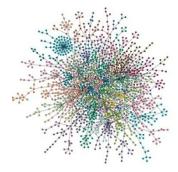
	1	2	3	4	5	6
1	0	Y	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0



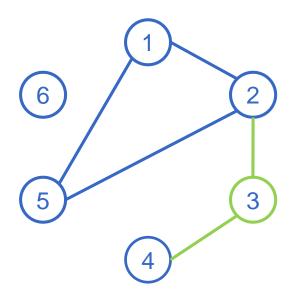
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



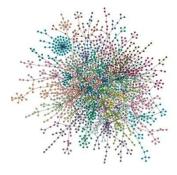
	1	2	3	4	5	6
1	0	1	0	0	1	0
2		0	Ч	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0



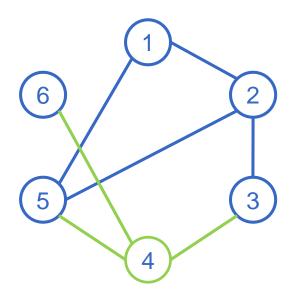
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



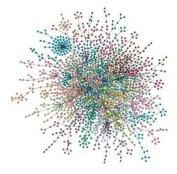
	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	-	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0



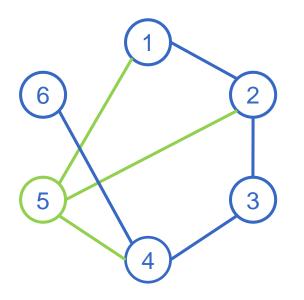
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1$ if $(i, j) \in E(G)$.



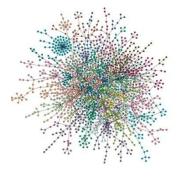
	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0



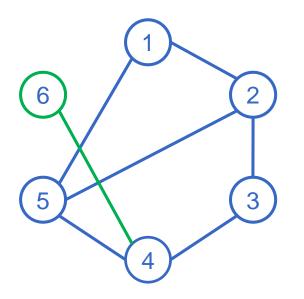
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



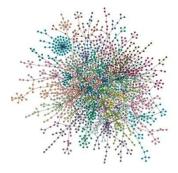
	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5		1000	0		0	0
6	0	0	0	1	0	0



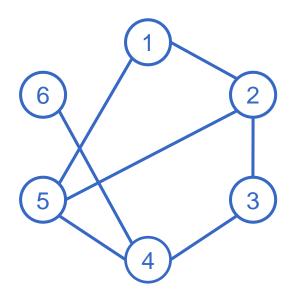
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow Aij = 1 \text{ if } (i, j) \in E(G)$.



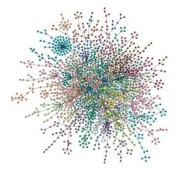
_	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0



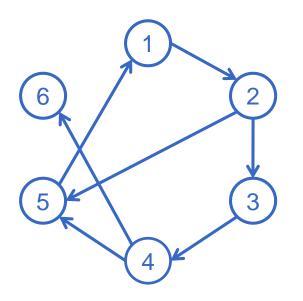
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



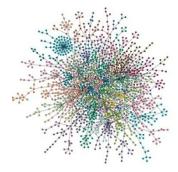
	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0



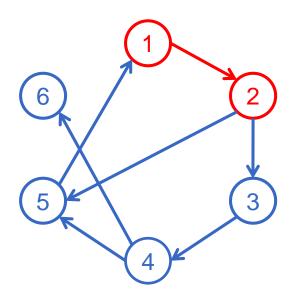
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



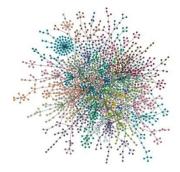
	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



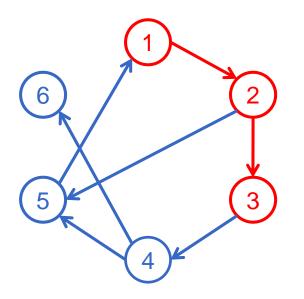
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



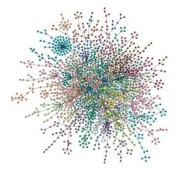
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



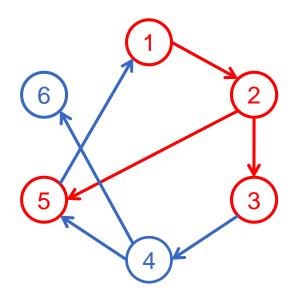
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



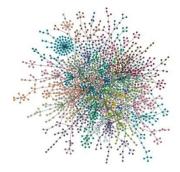
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



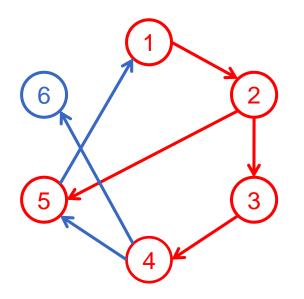
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



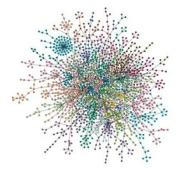
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



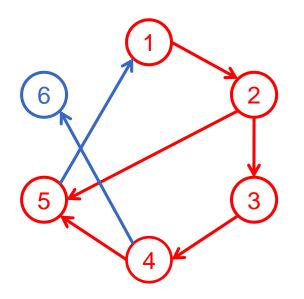
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



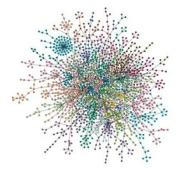
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	0	0	0	1	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



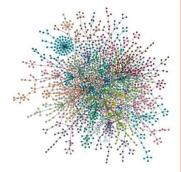
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0



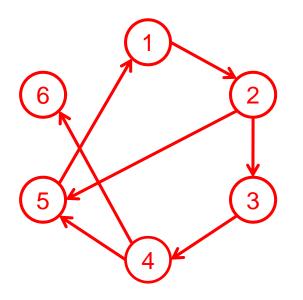
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



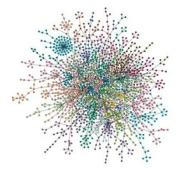
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	0	0	0	1	0	0
4	0	0	0	0	1	1
5	0	0	0	0	0	0
6	0	0	0	0	0	0

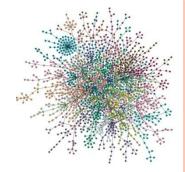


- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A **digraph** *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.



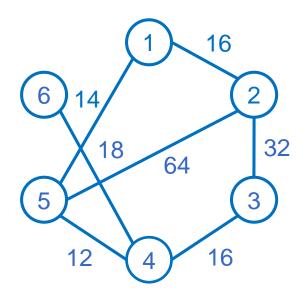
	1	2	3	4	5	6
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	0	0	0	1	0	0
4	0	0	0	0	1	1
5	1	0	0	0	0	0
6	0	0	0	0	0	0



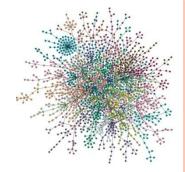


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij}$ if $(i, j) \in E(G)$.

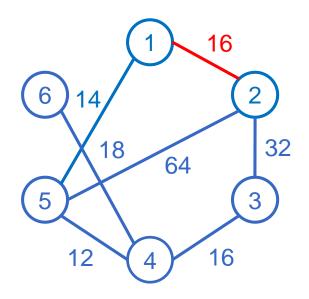


	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

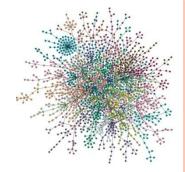


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij} if(i, j) \in E(G)$.

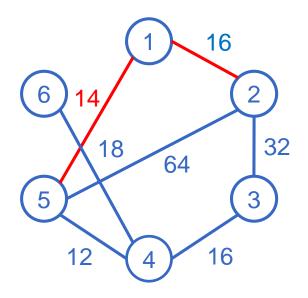


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	16	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

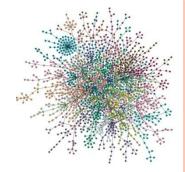


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij}$ if $(i, j) \in E(G)$.

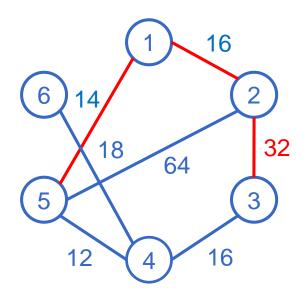


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	14	0	0	0	0	0
6	0	0	0	0	0	0

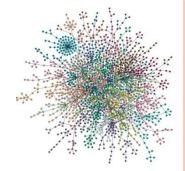


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij} if(i, j) \in E(G)$.

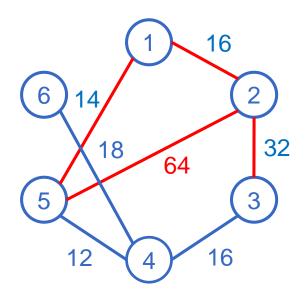


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	32	0	0	0
3	0	32	0	0	0	0
4	0	0	0	0	0	0
5	14	0	0	0	0	0
6	0	0	0	0	0	0

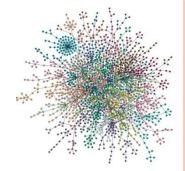


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij} if(i, j) \in E(G)$.

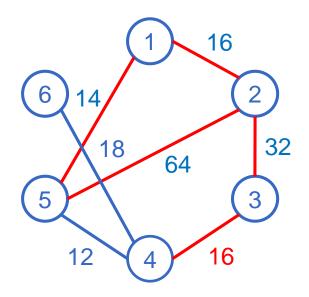


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	32	0	64	0
3	0	32	0	0	0	0
4	0	0	0	0	0	0
5	14	64	0	0	0	0
6	0	0	0	0	0	0

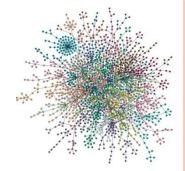


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij} if(i, j) \in E(G)$.

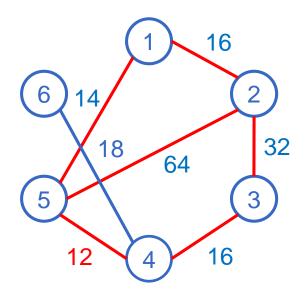


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	32	0	64	0
3	0	32	0	16	0	0
4	0	0	16	0	0	0
5	14	64	0	0	0	0
6	0	0	0	0	0	0

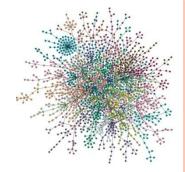


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij}$ if $(i, j) \in E(G)$.

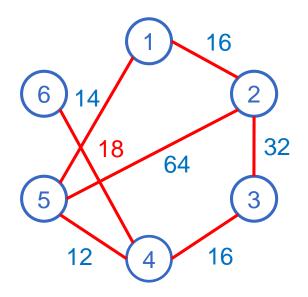


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	32	0	64	0
3	0	32	0	16	0	0
4	0	0	16	0	12	0
5	14	64	0	12	0	0
6	0	0	0	0	0	0

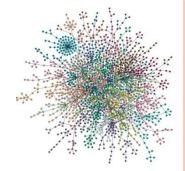


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij}$ if $(i, j) \in E(G)$.

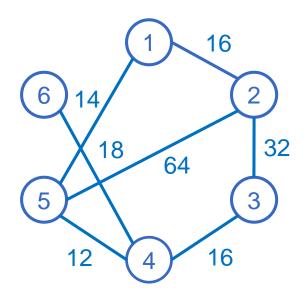


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	32	0	64	0
3	0	32	0	16	0	0
4	0	0	16	0	12	18
5	14	64	0	12	0	0
6	0	0	0	18	0	0

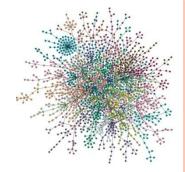


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted graph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = w_{ij} if(i, j) \in E(G)$.

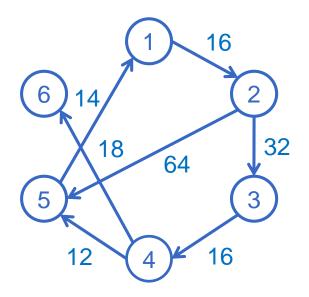


	1	2	3	4	5	6
1	0	16	0	0	14	0
2	16	0	32	0	64	0
3	0	32	0	16	0	0
4	0	0	16	0	12	18
5	14	64	0	12	0	0
6	0	0	0	18	0	0

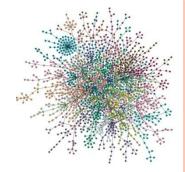


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

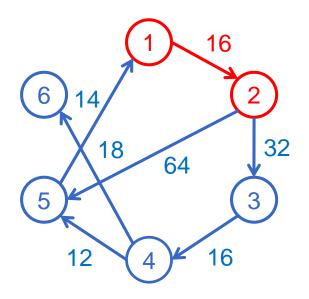


	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

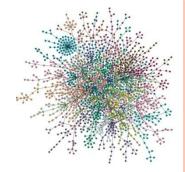


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

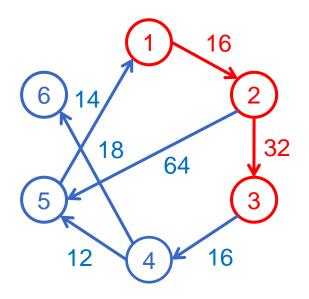


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

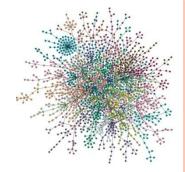


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

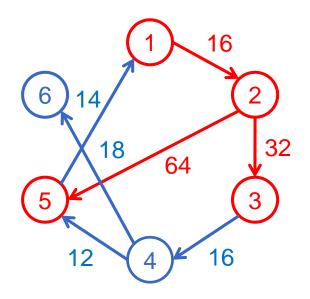


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

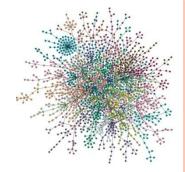


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

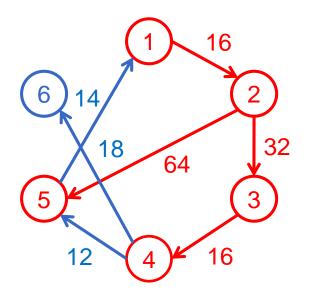


_	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	64	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

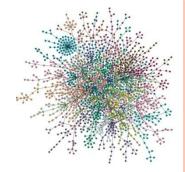


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

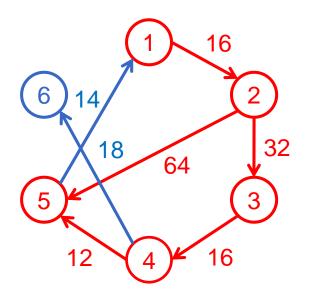


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	64	0
3	0	0	0	16	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

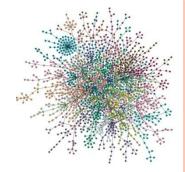


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

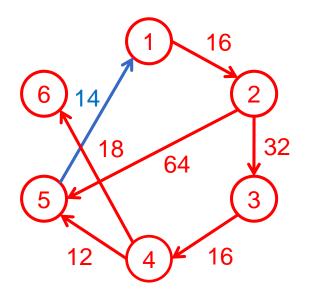


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	64	0
3	0	0	0	16	0	0
4	0	0	0	0	12	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0

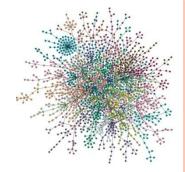


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

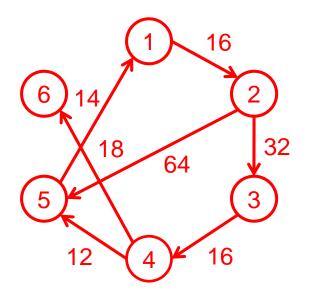


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	64	0
3	0	0	0	16	0	0
4	0	0	0	0	12	18
5	0	0	0	0	0	0
6	0	0	0	0	0	0

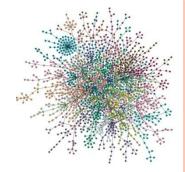


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

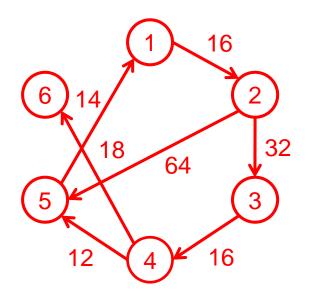


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	64	0
3	0	0	0	16	0	0
4	0	0	0	0	12	18
5	14	0	0	0	0	0
6	0	0	0	0	0	0

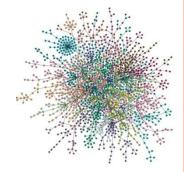


• Graph Representation – Adjacency Matrix

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- A weighted digraph *G* is represented by a $n \times n$ matrix, let *A*, where $\forall i, j \in V(G) \rightarrow A_{ij} = 1$ if $(i, j) \in E(G)$.

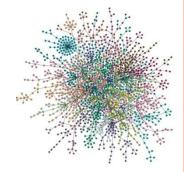


	1	2	3	4	5	6
1	0	16	0	0	0	0
2	0	0	32	0	64	0
3	0	0	0	16	0	0
4	0	0	0	0	12	18
5	14	0	0	0	0	0
6	0	0	0	0	0	0



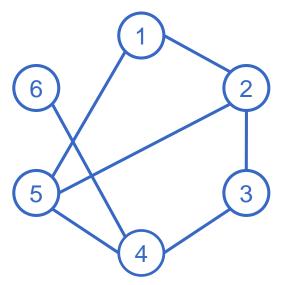
Graph Representation – Adjacency List

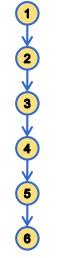
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

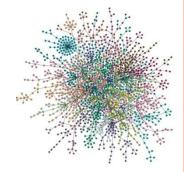


• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

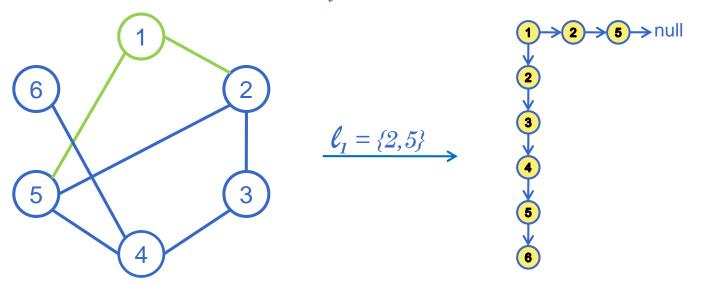


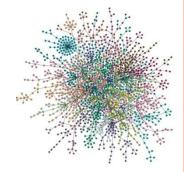




• Graph Representation – Adjacency List

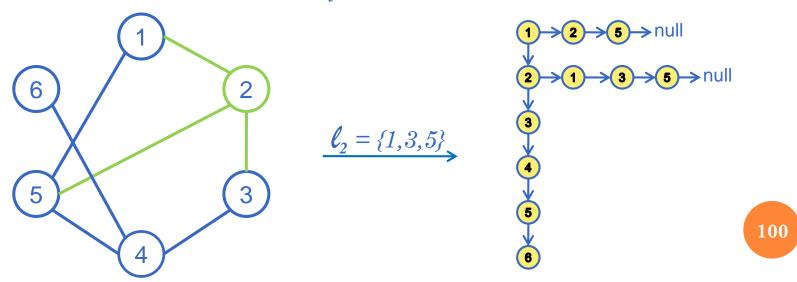
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

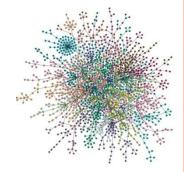




• Graph Representation – Adjacency List

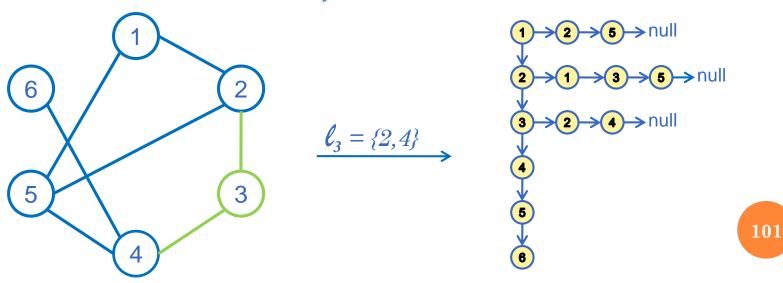
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

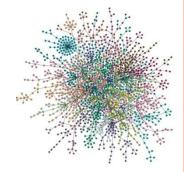




• Graph Representation – Adjacency List

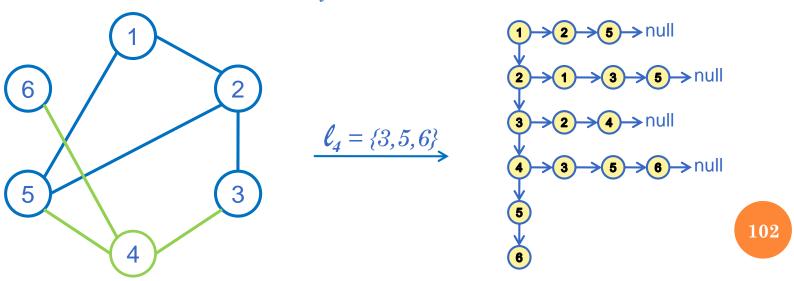
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

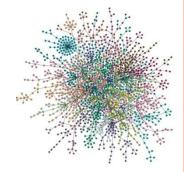




• Graph Representation – Adjacency List

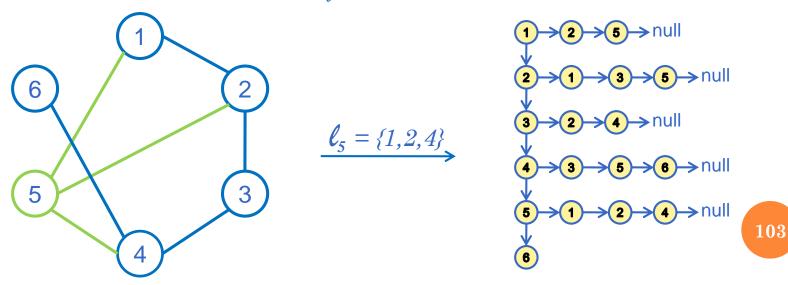
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

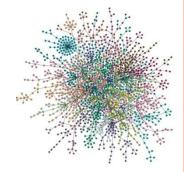




• Graph Representation – Adjacency List

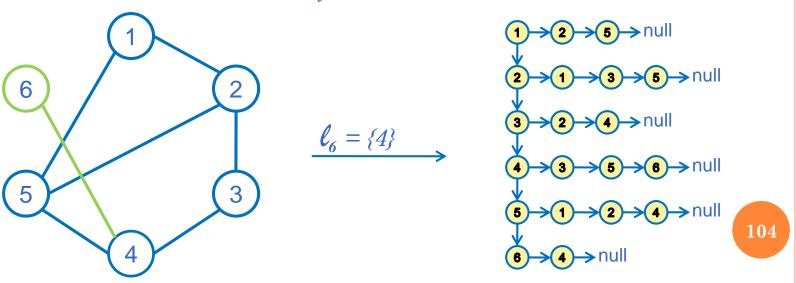
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

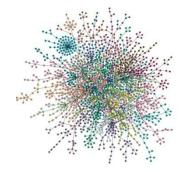




• Graph Representation – Adjacency List

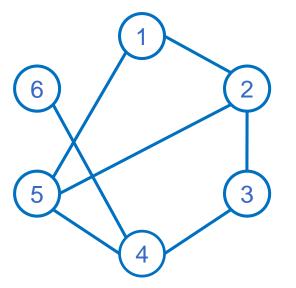
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

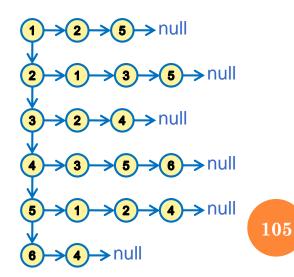


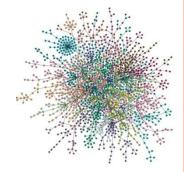


Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

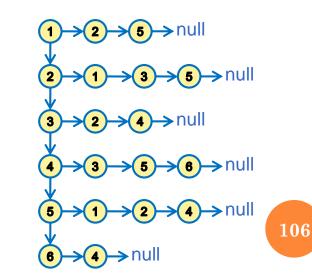






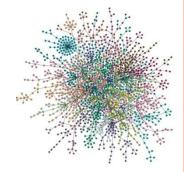
• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:



6

5



• Graph Representation – Adjacency List

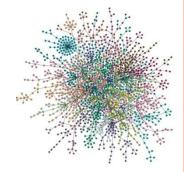
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

 $\forall v_i, v_j \in V(G) \rightarrow v_j \in l_i \ iff \ (v_i, v_j) \in E(G), \text{ where } i = |V|.$

 $\ell_{1} = \{2, 5\}$ $(1 \rightarrow 2 \rightarrow 5 \rightarrow \text{null})$ $(2 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow \text{null})$ $(3 \rightarrow 2 \rightarrow 4 \rightarrow \text{null})$ $(4 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow \text{null})$ $(5 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow \text{null})$ $(5 \rightarrow 4 \rightarrow \text{null})$ (107)

6

5



• Graph Representation – Adjacency List

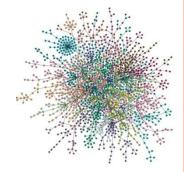
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),

2

- Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

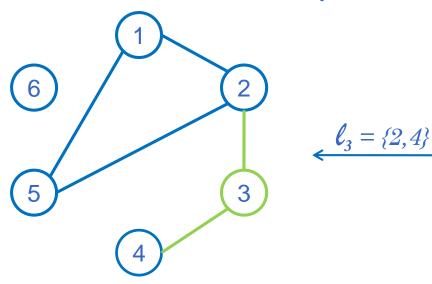
 $\forall v_i, v_j \in V(G) \rightarrow v_j \in l_i \ iff \ (v_i, v_j) \in E(G), \text{ where } i = |V|.$

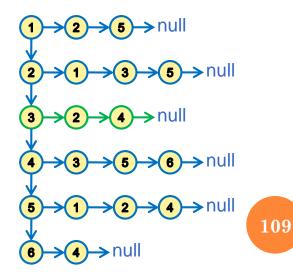
 $\ell_{2} = \{1, 3, 5\}$ $(1 \rightarrow 2 \rightarrow 5 \rightarrow \text{null})$ $(2 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow \text{null})$ $(3 \rightarrow 2 \rightarrow 4 \rightarrow \text{null})$ $(4 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow \text{null})$ $(5 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow \text{null})$ $(5 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow \text{null})$ (108)

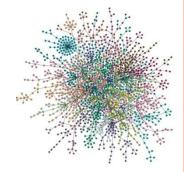


• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

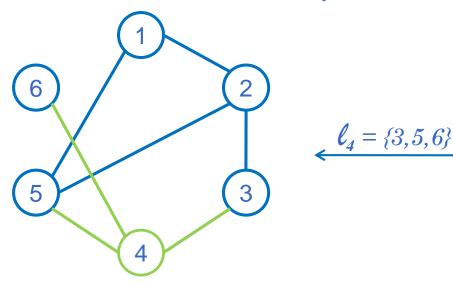


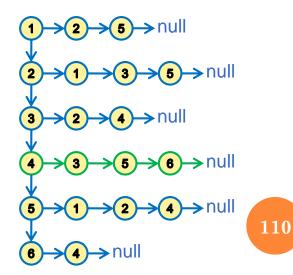


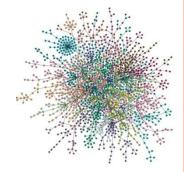


• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V = vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

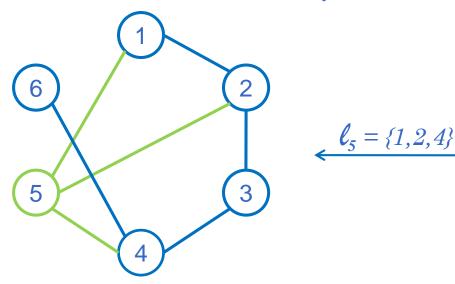


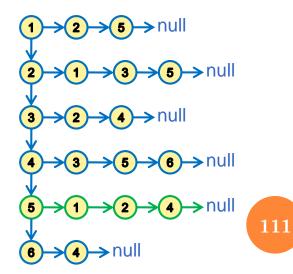


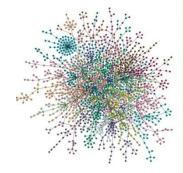


• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:





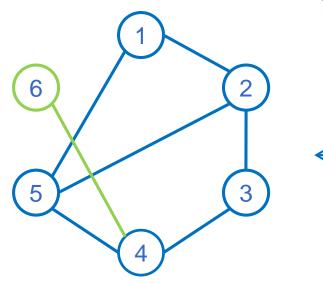


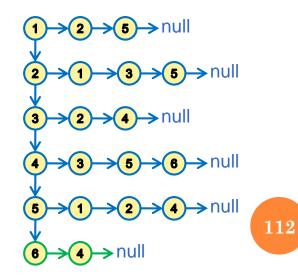
• Graph Representation – Adjacency List

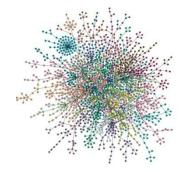
- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

 $\forall v_i, v_j \in V(G) \rightarrow v_j \in l_i \ iff \ (v_i, v_j) \in E(G), \text{ where } i = |V|.$

 $\ell_6 = \{4\}$

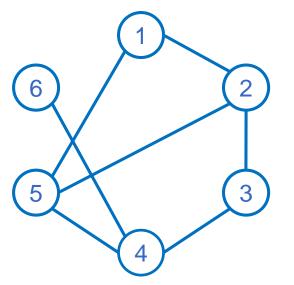


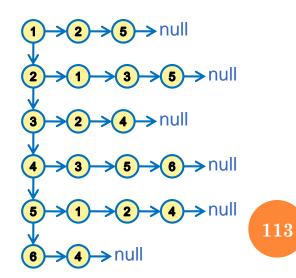




Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a graph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

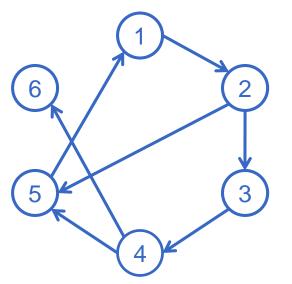


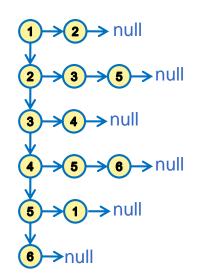


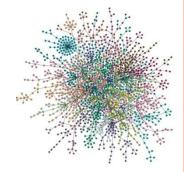
Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a **digraph** G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

 $\forall v_i, v_j \in V(G) \rightarrow v_j \in l_i \text{ if } f(v_i, v_j) \in E(G), \text{ where } i = |V|.$



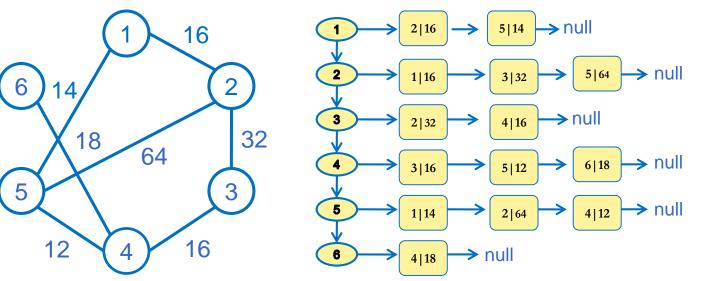


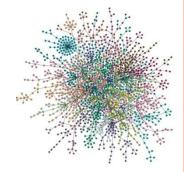


115

• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List *L* of a **weighted graph** *G* is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:





• Graph Representation – Adjacency List

- Let undirected graph, G = (V, E):
 - V =vertices V(G),
 - E = edges between pairs of vertices E(G),
 - Size parameters: n = |V|, m = |E|.
- The Adjacency List L of a weighted digraph G is composed by a set of lists l_i including for each vertex of the graph its adjacent vertices, as follows:

 $\forall v_i, v_j \in V(G) \rightarrow v_j \in l_i \text{ if } f(v_i, v_j) \in E(G), \text{ where } i = |V|.$

