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 Graph Class: Perfect Graphs

• A Perfect Graph is a graph in which the chromatic number of every

induced subgraph equals the size of the largest clique of that subgraph .

• An arbitrary graph G is perfect if  and only if  we have: 

∀ 𝑆 ⊆ 𝑉(𝐺)(𝜒 𝐺 𝑆 = 𝜔 𝐺 𝑆 )

• A graph 𝐺 is perfect iff its complement  𝐺 is perfect (perfect graph theorem)

• A perfect graphs are the same as Berge graphs, which are graphs 𝐺
where neither 𝐺 nor  𝐺 contain an induced cycle of odd length 5 or

more (strong perfect graph theorem).
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• A comparability graph is an undirected graph that connects pairs of  elements 

that are comparable to each other in a partial order. 

• Comparability graphs have also been called transitively orientable graphs, 

partially orderable graphs, containment graphs, and divisor graphs. 

• An incomparability graph is an undirected graph that connects pairs of  elements 

that are not comparable to each other in a partial order.

• Satisfy the Transitive Orientation Property

Each edge can be assigned a one-way direction in such a way that the resulting 

oriented graph (V, F): 𝑎𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝑏𝑐  𝐹 → 𝑎𝑐 ∈ 𝐹 (∀ 𝑎, 𝑏, 𝑐 ∈ 𝑉)

 Graph Class: Comparability Graphs 
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• In a simple graph 𝐺, if  𝑉 can be partitioned into two disjoint sets 

𝑉1 and 𝑉2 such that every edge in the graph connects a vertex in 

𝑉1 and a vertex 𝑉2

• Remark:  no edge in 𝐺 connects either two vertices in 𝑉1 or two vertices in 𝑉2

 Graph Class: Bipartitite Graphs 
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• In a simple graph 𝐺, if  𝑉 can be partitioned into two disjoint sets 

𝑉1 and 𝑉2 such that every edge in the graph connects a vertex in 

𝑉1 and a vertex 𝑉2

• Remark:  no edge in 𝐺 connects either two vertices in 𝑉1 or two vertices in 𝑉2

• Application example:  Representing Relations

• Representation example: 𝑉1 = {𝑣1, 𝑣2, 𝑣3} and 𝑉2 = {𝑣4, 𝑣5, 𝑣6}, 

v1

v2

v3

v4

v5

v6

V1
V2

 Graph Class: Bipartitite Graphs 
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• A complete bipartite graph has its vertex set portioned into 

two subsets of  𝑚 and 𝑛 vertices, respectively.

• There is an edge between two vertices if  and only if  one vertex is

in the first subset and the other vertex is in the second subset.

• The complete bipartite graph is usually denoted 𝐾𝑛,𝑚

 Graph Class: Bipartitite Graphs (Complete)
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two subsets of  𝑚 and 𝑛 vertices, respectively.

• There is an edge between two vertices if  and only if  one vertex is
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 Graph Class: Bipartitite Graphs (Complete)

• A complete bipartite graph has its vertex set portioned into 

two subsets of  𝑚 and 𝑛 vertices, respectively.

• There is an edge between two vertices if  and only if  one vertex is

in the first subset and the other vertex is in the second subset.

• The complete bipartite graph is usually denoted 𝐾𝑛,𝑚

• The graph 𝐾2,2 equals the 4-cycle 𝐶4 (the square).

𝐾2,2
𝐶4
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• In a simple graph 𝐺, if  𝑉 can be partitioned into two disjoint sets 

𝑉1 and 𝑉2 such that every edge in the graph connects a vertex in 

𝑉1 and a vertex 𝑉2

• Remark:  no edge in 𝐺 connects either two vertices in 𝑉1 or two vertices in 𝑉2

• A chordal bipartite graph is a bipartite graph 𝐵 = (𝑋, 𝑌, 𝐸) in which every

cycle of length at least 6 in 𝐵 has a chord, i.e., an edge that connects two vertices

that are a distance > 1 apart from each other in the cycle

• A convex bipartite graph is a bipartite graph with specific properties. A

bipartite graph, (𝑈 ∪ 𝑉, 𝐸), is said to be convex over the vertex set 𝑈 if 𝑈 can be

enumerated such that for all 𝑣 ∈ 𝑉 the vertices adjacent to v are consecutive.

• Convexity over V is defined analogously. A bipartite graph (U ∪ V, E) that is 

convex over both 𝑈 and 𝑉 is said to be biconvex or doubly convex.

 Graph Class: Sub-classes of  Bipartitite Graphs 
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 Graph Class: Permutation Graphs

• An intersection graph is a graph that represents the pattern of intersections of

a family of sets. Any graph can be represented as an intersection graph

• A permutation graph is a graph whose vertices represent the elements of a

permutation, and whose edges represent pairs of elements that are reversed by

the permutation.

o Geometrically can be defined, as the intersection graphs of  line segments 

whose endpoints lie on two parallel lines.
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permutation, and whose edges represent pairs of elements that are reversed by
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 Graph Class: Permutation Graphs

• An intersection graph is a graph that represents the pattern of intersections of

a family of sets. Any graph can be represented as an intersection graph

• A permutation graph is a graph whose vertices represent the elements of a

permutation, and whose edges represent pairs of elements that are reversed by

the permutation.

o Geometrically can be defined, as the intersection graphs of  line segments 

whose endpoints lie on two parallel lines.
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 Graph Class: Bipartite Permutation Graphs

• A graph is a bipartite permutation graph, if it is both bipartite and a

permutation graph.

• A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.

• A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) is a bipartite permutation graph iff it admits an 

ordering of  A that has the adjacency and enclosure properties

Convex

Bipartite

BiConvex

Bipartite

Bipartite

Permutation
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 Graph Class: Bipartite Permutation Graphs

• A graph is a bipartite permutation graph, if it is both bipartite and a

permutation graph.

• A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.

• A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) is a bipartite permutation graph iff it admits an 

ordering of  A that has the adjacency and enclosure properties

How many classes could be defined,

if  we combine properties from different graph classes…
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 Graph Class: Bipartite Permutation Graphs

• A graph is a bipartite permutation graph, if it is both bipartite and a

permutation graph.

• A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.

• A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) is a bipartite permutation graph iff it admits an 

ordering of  A that has the adjacency and enclosure properties

…
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 Graph Class: Bipartite Permutation Graphs

• A graph is a bipartite permutation graph, if it is both bipartite and a

permutation graph.

• A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.

• A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) is a bipartite permutation graph iff it admits an 

ordering of  A that has the adjacency and enclosure properties

…
…
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 Graph Class: Bipartite Permutation Graphs

• A graph is a bipartite permutation graph, if it is both bipartite and a

permutation graph.

• A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.

• A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) is a bipartite permutation graph iff it admits an 

ordering of  A that has the adjacency and enclosure properties

…
…

…
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 Graph Class: Bipartite Permutation Graphs

• A graph is a bipartite permutation graph, if it is both bipartite and a

permutation graph.

• A bipartite graph is a bipartite permutation graph iff it admits a strong ordering.

• A bipartite graph 𝐺 = (𝐴, 𝐵, 𝐸) is a bipartite permutation graph iff it admits an 

ordering of  A that has the adjacency and enclosure properties

http://www.graphclasses.org/
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 Graph Class: Chordal Graphs

• A chordal graph is one in which all cycles of four or more vertices have

a chord, which is an edge that is not part of the cycle but connects two

vertices of the cycle.

• Every induced cycle in the graph should have exactly three vertices. 

• They are sometimes also called triangulated graphs.
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 Graph Class: Chordal Graphs

• A chordal graph is one in which all cycles of four or more vertices have

a chord, which is an edge that is not part of the cycle but connects two

vertices of the cycle.

• Every induced cycle in the graph should have exactly three vertices. 

• They are sometimes also called triangulated graphs.

• Transitive Orientation Property

o Each edge can be assigned a one-way direction in such a way that

o the resulting oriented graph (V, F):

𝑎𝑏 ∈ 𝐹 𝑎𝑛𝑑 𝑏𝑐 ∈ 𝐹 ⟹ 𝑎𝑐 ∈ 𝐹 (∀ 𝑎, 𝑏, 𝑐 ∈ 𝑉)
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 Graph Class: Split Graphs

• A split graph is a graph in which the vertices can be partitioned into a

clique and an independent set.

• A split graph may have more than one partition into a clique and an

independent set.

• Example: the path a–b–c is a split graph, the vertices of

which can be partitioned in three different ways:

1. the clique {a,b} and the independent set {c}

2. the clique {b,c} and the independent set {a}

3. the clique {b} and the independent set {a,c}
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 Graph Class: Interval Graphs

• An interval graph is an undirected graph formed from a set of intervals on the

real line, with a vertex for each interval and an edge between vertices whose

intervals intersect.
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 Graph Class: Interval Graphs

• An interval graph is an undirected graph formed from a set of intervals on the

real line, with a vertex for each interval and an edge between vertices whose

intervals intersect.



BASICS…

38

 Graph Class: Interval Graphs

• An interval graph is an undirected graph formed from a set of intervals on the

real line, with a vertex for each interval and an edge between vertices whose

intervals intersect.

• Propositinon 1 : An induced subgraph of an interval graph is an interval graph.

Proof. 

If  𝐼𝑉 , 𝑣 ∈ 𝑉, is an interval representation of  a graph 𝐺 = (𝑉, 𝐸). Then,    

[𝐼𝑉], 𝑣 ∈ 𝑋, is an interval representation of  the induced subgraph 𝐺𝑋 = 𝑋, 𝐸𝑋 .

• Propositinon 2 : An interval graph satisfies the triangulated graph property. 

Proof. 

Suppose 𝐺 contains a cordless cycle [𝑣0, 𝑣1 , … . , 𝑣𝑙 − 1 ,
𝑣0 ] with 𝑙 > 3. 

Let 𝐼𝐾 → 𝑣𝐾 . For i =1, 2,…, l-1, choose a point 𝑃𝑖 ∈ 𝐼𝑖
− 1∩ 𝐼i . 

Since 𝐼𝑖 − 1 and 𝐼𝑖 + 1 do not overlap, the points 𝑃𝑖 constitute a strictly

increasing or decreasing sequence. Therefore, it is impossible for the

intervals 𝐼0 and 𝐼𝑙 − 1 to intersect, contradicting the criterion that 

𝑣0, 𝑣 𝑙 − 1 is an edge of  𝐺.
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 Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines {𝐹1, 𝐹2, … , 𝐹𝑛} (𝑛 ≥ 1) , each one

preserved in its own temperature range, let [𝑠𝑖 , 𝑡𝑖], 1 ≤ 𝑖 ≤ 𝑛.

Design an algorithm that will compute the maximum number of

medicines 𝐹𝑚𝑎𝑥 that can be preserved over the minimum required

temperature 𝐶𝑚𝑖𝑛 .

𝐹1 = [4, 15]  

𝐹2 = [3, 8]

𝐹3 = [0, 12]  

𝐹4 = [5, 16] 

𝐹5 = [1, 13], 

𝐹6 = [11, 16] 

𝐹7 = [2, 14] 

𝐹𝑚𝑎𝑥 = 6  AND 𝐶𝑚𝑖𝑛 = 5. 
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 Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines {𝐹1, 𝐹2, … , 𝐹𝑛} (𝑛 ≥ 1) , each one

preserved in its own temperature range, let [𝑠𝑖 , 𝑡𝑖], 1 ≤ 𝑖 ≤ 𝑛.

Design an algorithm that will compute the maximum number of

medicines 𝐹𝑚𝑎𝑥 that can be preserved over the minimum required

temperature 𝐶𝑚𝑖𝑛 .

𝐹1 = [4, 15]; 𝐹2 = [3, 8]; 𝐹3 = [0, 12]; 𝐹4 = [5, 16];

𝐹5 = [1, 13];  𝐹6 = [11, 16]; 𝐹7 = [2, 14] 
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 Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines {𝐹1, 𝐹2, … , 𝐹𝑛} (𝑛 ≥ 1) , each one

preserved in its own temperature range, let [𝑠𝑖 , 𝑡𝑖], 1 ≤ 𝑖 ≤ 𝑛.

Design an algorithm that will compute the maximum number of

medicines 𝐹𝑚𝑎𝑥 that can be preserved over the minimum required

temperature 𝐶𝑚𝑖𝑛 .

1 3 6

𝐹1 = [4, 15]; 𝐹2 = [3, 8]; 𝐹3 = [0, 12]; 𝐹4 = [5, 16];

𝐹5 = [1, 13];  𝐹6 = [11, 16]; 𝐹7 = [2, 14] 
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 Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines {𝐹1, 𝐹2, … , 𝐹𝑛} (𝑛 ≥ 1) , each one

preserved in its own temperature range, let [𝑠𝑖 , 𝑡𝑖], 1 ≤ 𝑖 ≤ 𝑛.

Design an algorithm that will compute the maximum number of

medicines 𝐹𝑚𝑎𝑥 that can be preserved over the minimum required

temperature 𝐶𝑚𝑖𝑛 .

𝑭𝒎𝒂𝒙 = 6  AND 𝑪𝒎𝒊𝒏 = 5. 

𝐹1 = [4, 15]; 𝐹2 = [3, 8]; 𝐹3 = [0, 12]; 𝐹4 = [5, 16];

𝐹5 = [1, 13];  𝐹6 = [11, 16]; 𝐹7 = [2, 14] 
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 Graph Class: Interval Graphs

• APPLICATION!

Let M a set of medicines {𝐹1, 𝐹2, … , 𝐹𝑛} (𝑛 ≥ 1) , each one

preserved in its own temperature range, let [𝑠𝑖 , 𝑡𝑖], 1 ≤ 𝑖 ≤ 𝑛.

Design an algorithm that will compute the maximum number of

medicines 𝐹𝑚𝑎𝑥 that can be preserved over the minimum required

temperature 𝐶𝑚𝑖𝑛 .
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 Graph Class: Interval Graphs

• APPLICATION!

The manipulation of such problems over interval graphs is made

through the utilization of the computation of the maximum clique.
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 Graph Class: Circular-Arc Graphs

• A Circular-arc graph is the intersection graph of a set of arcs on the circle.

• It has one vertex for each arc in the set, and an edge between every pair of

vertices corresponding to arcs that intersect

• If a circular-arc graph G has an arc model that leaves some point of the circle

uncovered, the circle can be cut at that point and stretched to a line, which results

in an interval representation.

• Unlike interval graphs, however, circular-arc graphs are not always perfect, as the

odd chordless cycles 𝐶5, 𝐶7, etc., are circular-arc graphs.
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 Graph Class: Cographs Graphs

• A cograph, or complement-reducible graph, or 𝑃4-free graph, is a graph that can 

be generated from the single-vertex graph 𝐾1 by complementation and disjoint 

union. 

• The family of  cographs is the smallest class of  graphs that includes 𝐾1 and is 

closed under complementation and disjoint union

• The cographs may be defined as the graphs that can be constructed using the     

following operations, starting from the single-vertex graph:

1. any single vertex graph,

… is a cograph;

2. if  𝐺 is a cograph, 

… so is its complement graph  𝐺;

3. if  𝐺 and 𝐻 are cographs, 

… so is their disjoint union 𝐺 ∪ 𝐻.
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 Graph Class: Threshold Graphs

• The quasi-threshold graphs are defined recursively as follows:. 

1. 𝐾1 is a quasi-threshold graph

2. Adding a new vertex adjacent to all vertices of  a quasi-threshold graph results 

in a quasi-threshold graph

3. The disjoint union of  two quasi-threshold graphs results in a quasi-threshold 

graph..

…



BASICS…

50

 Graph Classes

Perfect

Bipartite

Permutation

Biconvex

Bipartite

Convex

Bipartite

Chordal

Bipartite

Bipartite

Comparability

Thresshold

Quasi-

Thresshold

Cograph

Permutation Split Interval

Chordal



BASICS…

51

 Graph Class: Threshold Graphs

• A threshold graph is a graph that can be constructed from a one-vertex graph 

by repeated applications of  the following two operations:

o Addition of  a single isolated vertex to the graph.

o Addition of  a single dominating vertex to the graph, 

i.e. a single vertex that is connected to all other vertices.
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

3

1 2 3 4 5 6

1 0 1 0 0 1 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4

No self-loops

encountered !!!
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 1 0

2 1 0 1 0 1 0

3 0 1 0 1 0 0

4 0 0 1 0 1 1

5 1 1 0 1 0 0

6 0 0 0 1 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 1 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 1 0

3 0 0 0 1 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 1 0

3 0 0 0 1 0 0

4 0 0 0 0 1 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 1 0

3 0 0 0 1 0 0

4 0 0 0 0 1 1

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 1 0 0 0 0

2 0 0 1 0 1 0

3 0 0 0 1 0 0

4 0 0 0 0 1 1

5 1 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4



BASICS…

79

 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4

16

32

1612

14

18
64
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 16 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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4
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 14 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 32 0 0 0

3 0 32 0 0 0 0

4 0 0 0 0 0 0

5 14 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 32 0 64 0

3 0 32 0 0 0 0

4 0 0 0 0 0 0

5 14 64 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 32 0 64 0

3 0 32 0 16 0 0

4 0 0 16 0 0 0

5 14 64 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 32 0 64 0

3 0 32 0 16 0 0

4 0 0 16 0 12 0

5 14 64 0 12 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 32 0 64 0

3 0 32 0 16 0 0

4 0 0 16 0 12 18

5 14 64 0 12 0 0

6 0 0 0 18 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted graph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 𝑤𝑖𝑗 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1

3

2

5

6

4

1 2 3 4 5 6

1 0 16 0 0 14 0

2 16 0 32 0 64 0

3 0 32 0 16 0 0

4 0 0 16 0 12 18

5 14 64 0 12 0 0

6 0 0 0 18 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).
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5

6

4

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 64 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 64 0

3 0 0 0 16 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 64 0

3 0 0 0 16 0 0

4 0 0 0 0 12 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

1

3

2

5

6

4

32

1612

14

18
64

16



BASICS…

94

 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 64 0

3 0 0 0 16 0 0

4 0 0 0 0 12 18

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 64 0

3 0 0 0 16 0 0

4 0 0 0 0 12 18

5 14 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency Matrix

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• A weighted digraph 𝐺 is represented by a 𝑛 × 𝑛 matrix, let A, 

where ∀ 𝑖, 𝑗 ∈ 𝑉(𝐺) → 𝐴𝑖𝑗 = 1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸(𝐺).

1 2 3 4 5 6

1 0 16 0 0 0 0

2 0 0 32 0 64 0

3 0 0 0 16 0 0

4 0 0 0 0 12 18

5 14 0 0 0 0 0

6 0 0 0 0 0 0
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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l1 = {2,5}
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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null

l2 = {1,3,5}
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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4
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null

null
l3 = {2,4}
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.

l4 = {3,5,6}
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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null

null

l5  = {1,2,4}
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.

l5 = {1,2,4}
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a graph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a digraph 𝐺 is composed by a set of  lists 𝑙𝑖 including 

for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a weighted graph 𝐺 is composed by a set of  lists 

𝑙𝑖 including for each vertex of  the graph its adjacent vertices, as follows:

∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉 𝐺 → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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 Graph Representation – Adjacency List

• Let undirected graph, G = (V, E):

o 𝑉 = vertices - 𝑉(𝐺),
o 𝐸 = edges between pairs of  vertices - 𝐸(𝐺),
o Size parameters: 𝑛 = |𝑉|,𝑚 = |𝐸|.

• The Adjacency List 𝐿 of  a weighted digraph 𝐺 is composed by a set of  lists 

𝑙𝑖 including for each vertex of  the graph its adjacent vertices, as follows:

∀ 𝑣𝑖, 𝑣𝑗 ∈ 𝑉(𝐺) → 𝑣𝑗 ∈ 𝑙𝑖 𝑖𝑓𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺), where 𝑖 = |𝑉|.
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